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A B S T R A C T

When listening to continuous speech, cortical activity measured by MEG concurrently follows the rhythms of
multiple linguistic structures, e.g., syllables, phrases, and sentences. This phenomenon was previously
characterized in the frequency domain. Here, we investigate the waveform of neural activity tracking linguistic
structures in the time domain and quantify the coherence of neural response phases over subjects listening to
the same stimulus. These analyses are achieved by decomposing the multi-channel MEG recordings into
components that maximize the correlation between neural response waveforms across listeners. Each MEG
component can be viewed as the recording from a virtual sensor that is spatially tuned to a cortical network
showing coherent neural activity over subjects. This analysis reveals information not available from previous
frequency-domain analysis of MEG global field power: First, concurrent neural tracking of hierarchical linguistic
structures emerges at the beginning of the stimulus, rather than slowly building up after repetitions of the same
sentential structure. Second, neural tracking of the sentential structure is reflected by slow neural fluctuations,
rather than, e.g., a series of short-lasting transient responses at sentential boundaries. Lastly and most
importantly, it shows that the MEG responses tracking the syllabic rhythm are spatially separable from the MEG
responses tracking the sentential and phrasal rhythms.

Introduction

In the human language, smaller linguistic units such as syllables
and words can be recursively combined into larger linguistic structures
such as phrases and sentences. How linguistic units of different sizes
are represented in the brain is a fundamental question in cognitive
neuroscience (Buiatti et al., 2009; Everaert et al., 2015; Garrett et al.,
1966; Pallier et al., 2011; Peña and Melloni, 2012; Townsend and
Bever, 2001). It is shown that when listening to continuous speech,
cortical activity recorded by magnetoencephalography (MEG) and
electroencephalography (EEG) follows the rhythms of acoustic features
of speech that are related to syllabic and phonemic level processing (Di
Liberto et al., 2015; Ding and Simon, 2012a, b; Gross et al., 2013;
Kayser et al., 2015; Kerlin et al., 2010; Luo and Poeppel, 2007).
Recently, it is further shown that cortical activity can concurrently
follow higher level linguistic structures such as phrases and sentences
using speech materials illustrated in Fig. 1a (Ding et al., 2016).

Neural tracking of phrasal and sentential structures, however, was
only characterized in the frequency domain by analyzing the global
field power, leaving several questions unanswered. First, when cortical

activity become entrained/synchronized to the phrasal and sentential
rhythms, how long does it take for entrained activity to reach a steady
state? The buildup timecourse of entrained activity depends on at least
2 factors. First, it depends on the dynamic properties of the underlying
neural sources. For example, the auditory Steady State Response
(aSSR) to a sound repeating at 40 Hz builds up in ~300 ms, after
~12 cycles of the stimulus (Ross et al., 2002). Second, it depends on
how much time the brain needs to parse the temporal structure of the
input. For example, the aSSR may take up to 4 s to build up when the
periodic stimulus is interfered by competing sounds (Elhilali et al.,
2009). Here, we employ language materials that are easy to parse to
focus on the buildup process constrained by the dynamical properties
of the underlying neural network.

Second, frequency-domain analysis does not directly illustrate the
response waveform. Therefore, it is not intuitive whether the senten-
tial-rate response continuously changes over the timecourse of a
sentence (Fig. 1b) or whether it only shows an abrupt change at
sentential boundaries (Fig. 1c). If the neural response is a continuously
changing slow oscillation, it could be interpreted as an integrator that
accumulate information over the timecourse of a sentence (Pallier
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et al., 2011). In contrast, if the neural response is a short-lasting
transient response at structural boundaries, it is more appropriately
interpreted as a change/boundary detector.

Third, previous frequency-domain analysis was based on the global
field power of MEG, leaving it unclear whether the neural tracking of
different linguistic levels can be spatially separated using MEG? To
answer the above mentioned 3 questions, we apply a time-domain
analysis of MEG responses. Furthermore, although previous studies
assume that the sentential- and phrasal-rate neural responses are
entrained, i.e., phase locked, to the stimulus but the degree of phase
locking is not quantified. Here, we quantify the consistency of the
neural response phases over subjects by calculating the inter-subject
phase coherence (Fisher, 1993).

A time-domain analysis of MEG responses, however, is difficult for
several reasons. First, each neural generator, i.e. a current source,
produces a source/sink pattern in the MEG signal. The MEG signals
from the source and the sink have opposite polarities and the spatial
locations of the source and sink patterns are not aligned across subjects
due to the anatomical differences and the subjects’ head position inside
the MEGmachine. Second, there are usually multiple neural generators
contributing to the neural tracking of a continuous stimulus and these
neural generators could have different response phases due to their
positions in the neural processing hierarchy or their neurodynamical
properties. As a result, if the macroscopic MEG responses are
dominated by different neural generators in different subjects due to
anatomical differences, they will show phase differences across sub-
jects. Lastly, the MEG signal is a mixture of the responses from
multiple neural generators and component analysis methods, such as
the principal component analysis (PCA), independent component
analysis (ICA), and denoising source separation (DSS), are often
employed to separate different neural sources. The polarity of the
response waveforms extracted by the component analysis, however, is
usually arbitrary, which further increases the difficulty for grand
averaging the response waveforms across subjects.

Although it is difficult to align the response phase across subjects in
MEG, recent studies have shown that the neural response phase is
relevant to perception (Henry and Obleser, 2012; Lakatos et al., 2008;
Schroeder and Lakatos, 2009) and shows consistency across subjects
during the processing of continuous natural stimuli (Dmochowski
et al., 2014; Hasson et al., 2012; Hasson et al., 2004; Honey et al.,
2012; Lankinen et al., 2014). For normal listeners, during speech
comprehension, it is reasonable to assume and empirical studies
support that common neurophysiological processes underlie the pro-
cessing of the same unambiguous sentence.

To optimally extract neurophsyiological processes that are common
across subjects, we propose an analysis method called the Inter-Subject
Coherent Component Analysis (ISCCA). The ISCCA decomposes the
multi-channel MEG recordings of each subject into components and
maximizes the inter-subject correlation of each component. Each
ISCCA component is extracted by a spatial filter and can be viewed
as the recording from a virtual sensor spatially tuned to a cortical
network that shows coherent neural activity over subjects. The ISCCA
spatial filters are subject-specific and normalize individual differences
in response topography. Since the ISCCA components are maximally
correlated over subjects, they can be directly averaged for group level
analysis. As an illustration, Fig. 2 shows that responses may have very
different amplitude and polarity in different channels in the sensor
space. However, when the responses are projected to the ISCCA space,
responses that show coherence over subjects are attributed to the same
ISCCA component with the same polarity, which facilitates group-level
analysis of the response waveform.

In the following, we apply the ISCCA to extract MEG response
components that have a coherent response waveform over subjects and
analyze the time course of neural tracking of linguistic structures based
on the grand averaged response waveform.

Materials and methods

Experimental procedures

Sixteen healthy young adults participated in the experiments and
the data analyzed here were previously reported by Ding et al. (2016).
In the experiment, the subjects listened to an isochronous sequence of
syllables. These syllables were ordered so that neighboring 4 syllables
constructed a sentence (Fig. 1a). Each sentence was composed of a
noun phrase (2 syllables) followed by a verb phrase (2 syllables). The
syllables were presented at a constant rate of 4 Hz and no pause was
inserted between phrases or sentences. Therefore, the sentences were
presented at 1 Hz and the phrases were presented at 2 Hz.

In each trial, 40 syllables were played and 28 trials were collected.
To ensure attention, the subjects were instructed to detect semantically
abnormal sentences such as “green frogs drove cars” by a button press
at the end of the trial. Eight trials contained abnormal sentences and
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Fig. 1. Linguistic structure of the stimulus (a) and possible neural responses (b-c). (a) A
sequence of Chinese syllables are presented isochronously at 4 Hz. Examples in English
are also shown for illustrative purposes. All syllables are independently synthesized by a
computer. Two syllables construct a phrase and two phrases construct a sentence.
Therefore, the syllables, phrases, and sentences are presented at 4 Hz, 2 Hz, and 1 Hz
respectively. This figure is adapted from Ding et al. (2016). (b-c) Two hypotheses about
how cortical activity follows the sentential rhythm, whether it continuously changes over
time (b) or occurs only briefly at sentential boundaries (c).
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Fig. 2. Illustration of the basic function of the Inter-Subject Coherent Component
Analysis (ISCCA). The ISCCA decomposes the multi-channel recordings from individual
subjects into components, by maximizing the correlation between response waveforms
across subjects. In this illustration, a 4-channel recording was simulated for 3 subjects.
Each recording is a mixture of an early response, a late response, and white noise. The
late response has the same waveform across subjects and is captured by the first ISCCA
component. The waveform of the early response slightly varies across subjects and is
captured by the second ISCCA component. The noise signal is captured by the 3rd and
the 4th ISCCA components. The early response is simulated by a sawtooth signal. Its
phase is identical within each subject across channels but varies across subjects. Both the
early and the late responses have random polarity and amplitude in each channel. In this
illustration, since the data have only 4 channels, the DSS dimension reduction step is
omitted and the mCCA is applied to the 4-channel data directly.
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were removed from the analysis. Therefore, 20 trials were analyzed for
each subject.

MEG recordings

The neuromagnetic signals were recorded using a 157-channel
whole-head system (KIT). The signal was sampled at 1 kHz, with a 200-
Hz low-pass filter and a 60-Hz notch filter applied online and a 0.5-Hz
high-pass filter applied offline. Environmental magnetic fields were
removed based on 3 reference sensors using the TSPCA method (de
Cheveigné and Simon, 2007). The MEG signals were decimated to
200 Hz, with an FIR anti-aliasing filter (100 Hz cut-off frequency).

Spatial filtering

Spatial filters can be used to extract the neuromagnetic signals
generated from specific neural sources (either point sources or net-
works) in the brain. Denote the MEG recording from a subject as X
(channel×time) and a linear spatial filter as a (channel ×1). The output
of the spatial filter is y=aTX, which is a weighted sum of the signals
recorded from different channels. By adjusting the weight of each
sensor, i.e., a, a spatial filter can selectively enhance neural activity
from some brain areas while suppressing neural activity from other
areas. The output of a spatial filter can be viewed as the signal recorded
by a virtual sensor that selectively records neural activity from a
specific point source or neural network.

ISCCA

The ISCCA applies spatial filters to extract neural activity that is
coherent over subjects. It designs spatial filters in two steps. The first
step applies a dimension reduction matrix D to convert the multi-
channel MEG recordings into a few components. This step is applied
independently for different subjects, using the denoising source
separation (DSS) (de Cheveigné and Parra, 2014; de Cheveigné and
Simon, 2008). In the second step, an additional spatial filter w is
applied to the DSS components. This spatial filter extracts the neural
response component consistent over subjects by considering the data
from all subjects simultaneously. The second step relies on the multi-
set canonical component analysis (mCCA) (Kettenring, 1971). Using
the two steps, the ISCCA factorizes a spatial filter a as a=Dw, where D
is the DSS matrix (channel×component) and w is derived by mCCA
(component ×1).

The DSS decomposes the MEG recordings to extract neural
responses that are consistent over trials. It maximizes the ratio between
the power of the averaged response and the power of single trial MEG
recordings, and therefore it extracts neural responses that are con-
sistent over trials. The DSS has been successfully applied to extract the
neural activity entrained to speech (Ding et al., 2016; Ding and Simon,
2013). The DSS transforms the sensor-space MEG recordings into
components and the transformation matrix D0 is derived as follows. If
the covariance matrix for single trial MEG recordings is C0 (channel×-
channel) and the covariance matrix for the MEG response averaged
over trials is C1 (channel×channel), the DSS spatial filters are the
generalized eigenvectors of C0 and C1. In other words, C1D0=ΛC0D0,
where Λ is a diagonal matrix. The inverse ofD, denoted as F, is the DSS
mixing matrix (shown in Fig. 6c) and carries topographical information
about each DSS component (de Cheveigné and Simon, 2008). If L
components are kept for futher analysis, the dimension reduction
matrix D is constructed by the first L columns of D0. The correspond-
ing mixing matrix F0 is constructed by the first L rows of F. In most of
the analyses done in this article (except for Fig. 7), six DSS components
were used for further analysis, in consistent with previous studies
(Ding et al., 2016).

In the second step, another set of linear spatial filters is used to
extract neural activity that shows strong coherence over subjects.

Denote the DSS components from subject i as Xi (channel × time),
where i = 1, 2,…, m. The response component extracted by a linear
spatial filter wi is then yi=w Xi

T
i. The correlation between the response

components from two different subjects, i.e., yi and yj, is

cij=y y y y y y/i j i i j j
T T T . The set of linear spatial filters that maximizes the
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m
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This optimization problem can only be solved numerically.
However, if the constraint is relaxed to w X X w m∑ =i

m
i i i i=1
T T , the solution

becomes the following generalized eigenvalue problem, which is known
as the MAXVAR solution for the mCCA problem (Kettenring, 1971; Vía
et al., 2007; Zhang et al., 2014).
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Multiple solutions exist for Eq. (2) and each solution w leads to an
ISCCA spatial filter a = Dw. The ISCCA component for subject i is
zi=a Xi

T
i. Since zi is unitless, we normalize its mean to 0 and its variance

to 1 for each subject. Essentially, the ISCCA extracts common response
waveforms from multiple subjects and aligns the polarity of the
waveform across subjects. The mCCA components are ranked based
on the eigenvalue λ, which roughly corresponds to inter-subject
correlation in response waveform. If there are only two subjects, i.e.,
m=2, the solution in (2) reduces to the CCA solution. The CCA has been
widely applied to process MEG and EEG signals. A number of studies
applied CCA to analyze the relationship between MEG responses and
the sensory stimuli (Bin et al., 2009; Koskinen et al., 2012; Lin et al.,
2006; Zhang et al., 2014) while this study and some other previous
studies employ mCCA to analyze the relationship between the MEG
responses of different subjects (Dmochowski et al., 2014; Lankinen
et al., 2014).

If each solution to Eq. (2) is denoted as w(i), then W=[w(1), w(2),
…, w(K)] construct the demixing matrix of the mCCA, where K is the
number of mCCA component being analyzed and in this case K equals
the number of DSS component being analyzed. The ISCCA mixing
matrix is calculated as M=W−1F0. The ISCCA demixing matrix carries
information about the topographic distribution of each ISCCA compo-
nent (de Cheveigné and Simon, 2008) and is shown in Fig. 3c. The
Matlab code is available at https://github.com/zjuzw/iscca for the
mCCA and http://audition.ens.fr/adc/NoiseTools/ for the DSS.

Cross validation

To avoid artifacts due to overfitting, the ISCCA results were based
on 10-fold cross-validation. The 20 trials were divided into 10 disjoint
sets of equal size. In the cross validation procedure, one dataset was
assigned as the test set while the other 9 datasets were assigned as the
training set. This process was repeated 10 times with different dataset
being the test set. For each training/test set, all trials were averaged.

The ISCCA spatial filter was derived based on the training set and
applied to the test set. Such cross-validation procedure was repeated 10
times. When analyzing the response waveform, the results from the 10
cross-validation trials were averaged after aligning their polarity based
on the following procedure: A PCA was used to extract the principal
component across 10 folds as a benchmark. Each of the 10 cross-
validation results were then correlated with the benchmark. If the
correlation was negative, the polarity of the response waveform was
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flipped by multiplying −1. The phase alignment was necessary since the
cross-validation procedure was repeated 10 times independently and
the 10 results could have arbitrary polarity.

Spectral analysis

In the spectral analysis, the response during the first sentence in
each trial was removed, to avoid the transient responses related to the
trial onset. The responses during the presentation of the remaining 9
sentences (9 s in duration) were transformed into the frequency
domain using the Discrete Fourier Transform (DFT) without any
window. The frequency resolution of the DFT was therefore 1/9 Hz.

When analyzing the phase coherence across subjects, the neural
response phase was extracted based on the DFT coefficient at each
frequency. The phase coherence across the 16 subjects was calculated
as follows (Fisher, 1993),
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where θ f( )i denotes the response phase of subject i, at frequency f. R f( )2

bounds between 0 and 1, with a larger value corresponding to higher
phase coherence. During cross-validation, the inter-subject phase
coherence was calculated for each test set and then averaged over 10
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Fig. 3. The waveform and the spectrum of the first 5 ISCCA components. The component index is labeled on the right. (a) Response waveform. The first 2 ISCCA components show
oscillations slower than the oscillations in the last 3 components. The grand average over subjects is shown by the fold black curve while the shaded gray area shows 1 SD over subjects
on each side. The speech stimulus starts at time 0. See Fig. 5c for the response averaged over each 1-s duration sentence. (b) Response spectrum. The solid black curve shows the
spectrum of the response waveform grand averaged over subjects, i.e., the black curve in panel (a). The shaded gray region is 1 SD over subjects on each side. The grand average of the
response spectrum of individual subjects is shown by the dotted black curve. For the solid black curve, frequency bins showing significantly stronger power than neighboring bins are
shown by stars (P < 0.005, F-test, F(2,12) > 20, FDR corrected). (c) Response topography averaged over subjects. Darker color indicates stronger power. The response generally shows a
bilateral pattern but the detailed differences are difficult to quantify in the sensor space.
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Fig. 4. Spatial separation of neural tracking of different linguistic structures. The power difference between frequencies significantly varies among different ISCCA components (1-way
repeated measures ANOVA, P < 0.005). Data from individual subjects are shown by gray circles while the error bar is centered at the mean and covers the range between the 25th
percentile and the 75th percentile. The power difference that is significantly larger or smaller than 0 is marked by stars (**P < 0.005, paired t-test, t(15) > 4, FDR corrected).
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test sets.
In this study, R f( )2 calculated based on Eq. (3) is called the inter-

subject phase coherence while the pairwise correlation between the
response waveforms of different subjects is referred to as the inter-
subject correlation.

Statistical analysis and significance tests

An F-test was used to test if the power at a target frequency was
significantly higher than the power at neighboring frequencies. The
power in neighboring frequencies was averaged over 6 bins (3 bins on
each side). Neighboring frequency bins are separated by 1/9 Hz. Under
the null hypothesis, i.e., the power at the target frequency being the
same as the mean power at neighboring frequencies, the ratio between
the power at the target frequency and the power averaged over
neighboring frequency bins is subject to a F(2,12) distribution (John
and Picton, 2000). All frequency bins ranged from 0.5 Hz to 4.5 Hz was
submitted to the same test, followed by a FDR correction for multiple
comparisons.

To assess the significance of inter-subject phase coherence, we
estimated the false alarm rate numerically. The null distribution is
simulated by 10,000 samples of phase angles uniformly distributed
between (−π, π) for each of the 16 subjects and each of the 10 test set
for the 10-fold cross-validation procedure. The phase coherence across
subjects was computed and averaged over 10 cross-validation test sets,
following the same procedure of how the inter-subject phase coherence
is calculated for real MEG data. The significance level of an inter-
subject phase coherence value S is determined by the ratio of samples
exceeding S in the 10,000 simulated samples. This significance test is a
generalization of the Rayleigh Test for circular distributions (Fisher,

1993) and tests whether the response phase distribution deviates from
a uniform distribution. The same test was applied for all frequency bins
between 0.5 Hz to 4.5 Hz with a FDR correction.

Results

Response waveform

The data consists of 16 subjects listening to continuous speech
stimuli with hierarchically embedded linguistic structures (Fig. 1). In
the speech materials, the syllables, phrases, and sentences are pre-
sented at a constant rate of 4 Hz, 2 Hz, and 1 Hz, respectively. The
multi-channel MEG responses are decomposed into components using
the ISCCA based on a 10-fold cross-validation procedure. The wave-
forms of the first 5 ISCCA components are shown in Fig. 3a. The ISCCA
components show clear periodicity and high consistency across sub-
jects. Except for a transient response to the sound onset, the responses
appear to be a steady state oscillation throughout the 10 s stimulus
presentation.

To quantify if the neural response consistently builds up or adapts,
we calculated the mean response power during the presence of each
sentence (from the 2nd sentence to the 10th sentence, excluding the 1st
sentence because of the transient response to sound onset). The
response power does not significantly vary between the 2nd sentence
and the 10th sentence (P > 0.1, 1-way ANOVA, no correction for
multiple comparisons). In other words, the response to each sentence
(excluding the first one) has roughly the same power.
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Fig. 5. Phase analysis for the first 5 ISCCA components. (a) Inter-subject phase coherence at different frequencies. The MEG response shows significant phase coherence over subjects at
1 Hz for the first two ISCCA components, at 2 Hz for all the components, and at 4 Hz for the last 3 components (statistical test described in Methods, FDR-corrected). (b) The response
phases at 1, 2, and 4 Hz, shown on a unit circle. The response at each frequency shows consistent variance across ISCCA components, indicating multiple neural sources. Data are shown
only when significant phase coherence (P < 0.005) is observed. (c) The response averaged over all sentences and subjects. The first sentence within each trial is not included in this
analysis to avoid the transient response to sound onset. The first two components are both dominated by the 1 Hz response but have different response phases. Similarly, the last two
components are dominated by the 4 Hz response but show distinct response phases.
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Spatially separated neural tracking of different linguistic levels

As is evident from Fig. 3a, different ISCCA components fluctuate on
different time scales. Frequency domain analysis further reveals that
the first two ISCCA components are dominated by the 1-Hz and 2-Hz
responses while the following three ISCCA components are dominated
by 2-Hz and 4-Hz responses (Fig. 3b). Since each ISCCA component
can be viewed as neural activity recorded from a specific neural
network, these results demonstrate that some neural networks selec-
tively follow the sentential and phrasal rhythms while other neural
networks selectively follow the phrasal and syllabic rhythms. The
topographical distribution of each ISCCA component is shown in
Fig. 3c. Responses are observed in both hemispheres. Future studies
are needed to quantify the spatial differences between components in
the neural souce space, by integrating MEG with structual MRI.

The spatial separation of neural responses at different rates is
further quantified in Fig. 4 for individual subjects. If two responses are
spatially separable, we can selectively enhance one response over
another by changing the spatial tuning of the spatial filter. In other
words, for spatially separable neural responses, the power ratio
between them could depend on the spatial filter. In contrast, if the
responses are not spatially separable, a spatial filter can enhance or
suppress both but will not affect their power ratio. Fig. 4 shows the
power difference between the neural responses at two different
frequencies. In this analysis, the response spectrum is normalized by
the total power between 0.5 and 4.5 Hz for each subject. The power
ratio significantly differs across components for each of the panels in
Fig. 4 (P < 0.001, 1-way repeated measures ANOVA). Furthermore, the
1-Hz and 2-Hz responses are stronger than the 4-Hz response for the
first 2 ISCCA component but weaker than the 4-Hz response for the 5th

ISCCA component (P < 0.0005, paired t-test, t(15) > 4, FDR corrected),
showing that spatial filters can selectively enhance the 1- and 2- Hz

responses while suppressing the 4-Hz response.
Therefore, for individual subjects, the neural tracking of sentential,

phrasal, and syllabic responses are spatially separable. Additionally, it
is worth mentioning that the ISCCA is a method to optimize inter-
subject correlation rather than separating neural tracking of different
linguistic levels. By analyzing the response correlation across subjects,
however, the neural responses to different linguistic levels are naturally
separated into different spatial components.

Response phase

The response phase is further analyzed in Fig. 5. In the spectral
domain, it is clear that high inter-subject phase coherence appears at 1,
2, or 4 Hz (Fig. 5a). At and only at these 3 frequencies, the response
phase statistically significantly deviates from a uniform distribution.
The response phase at each frequency varies across ISCCA compo-
nents, as is clear from both the Fourier response phase (Fig. 5b) and
the waveform averaged over sentences (Fig. 5c).

If different response components show different response phases at
the same frequency for individual subjects, it indicates that the MEG
responses at that frequency are generated from multiple neural sources
that are spatially distinguishable by MEG (Simon and Wang, 2005).
Therefore, that fact that different ISCCA components show different
response phases at each of the frequency of interest, i.e., 1, 2, and 4 Hz,
indicate multiple neural generators for the response tracking each
linguistic level, consistent with previous ECoG results (Ding et al.,
2016).

Validating the ISCCA procedure

In the ISCCA, the multi-channel MEG data from individual subjects
are first processed by the DSS, for dimension reduction and denoising.
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Then, the data from all subjects are jointly optimized using the mCCA
to extract components coherent across subjects. Here, we first inves-
tigate the necessity of mCCA and then investigate the effect of DSS
dimension reduction.

Fig. 6 illustrates the waveform and spectrum of the first 5 DSS
components. Since the waveform of each DSS component has arbitrary
polarity, we align the response polarity over subjects by adjusting the
polarity of each subject to maximize the mean pairwise inter-subject
correlation. Even with polarity adjustment, as shown in Fig. 6, the
response waveform still shows considerable variance across subjects,
especially for the last 3 components analyzed here. More importantly,
the DSS does not separate the neural tracking of different linguistic
levels to different components. Therefore, the mCCA is necessary to
reliably extract response waveforms and to separate neural tracking of
different linguistic levels.

We then test if the DSS dimension reduction procedure is neces-
sary. Fig. 7 shows how the inter-subject correlation at 1, 2, and 4 Hz for
the first 10 ISCCA components and how the inter-subject correlation
changes as a function of the number of DSS components retained for
mCCA. It also shows the results when the sensor-space data is used for
the mCCA directly. Clearly, the DSS dimension reduction increases the
inter-subject correlation, and in general the ISCCA derived from the
top 5 or 10 DSS components achieved the best performance. Therefore,
both DSS and mCCA are necessary component for the ISCCA.

Discussion

This study demonstrates that neural tracking of different linguistic
levels can be spatially dissociated using MEG and that the neural
tracking of larger linguistic structures such as phrases and sentences
emerge early, not requiring many repetitions of sentences. A new

method, i.e. the ISCCA, is proposed to extract the timecourse of neural
tracking of continuous stimulus and to decompose neural responses
into components tracking different stimulus structures.

Spatially separable neural tracking of different linguistic levels

Each ISCCA component is obtained by spatially filtering the multi-
channel MEG recordings. Figs. 3b and 4 illustrate that, in an
unsupervised manner, the ISCCA designs spatial filters can selectively
enhance the neural tracking of one linguistic level (syllables, phrases,
or sentences) while suppressing or not affecting the other responses.
These results demonstrate that the neural networks tracking sentential
and syllabic structures are spatially separable in the MEG sensor space.
Furthermore, the fact that different ISCCA components show different
response phases at the same frequency indicates that the neural
response tracking each linguistic level is generated from multiple
neural sources.

Consistent with these MEG results, previous ECoG results also
show that neural tracking of different linguistic levels is generated from
board but distinguishable neural networks (Ding et al., 2016). The
ECoG results, however, show that the neural tracking of different
linguistic levels is only separable on a fine spatial scale but in
macroscopic cortical areas. Therefore, it is surprising that these
responses are separable by MEG, in an unsupervised manner. On the
other hand, separating the neural tracking of different linguistic levels
in MEG does not necessarily require resolving the fine spatial separa-
tion of these networks. Instead it only requires distinguishing the
“center of gravity” of these networks.

Waveform of low-frequency neural entrainment to speech

Neural activity can synchronize to the 1 Hz sentential rhythm in
several ways (Zhou et al., 2016). One is that a transient, i.e., short-
lasting, evoked response occurs at the boundaries between sentences
(Fig. 1c). Another possibility is that the response continuously changes
over the timecourse of a sentence (Fig. 1b). A third possibility is that
the power of high-frequency neural activity, e.g., in the high-gamma or
alpha bands, fluctuates at the sentential rate. Previous theoretical
analysis suggests that a spectral peak at the sentential rate in the
response spectrum indicates a roughly sinusoidal response at the
sentential rate (Zhou et al., 2016). The current study, however, directly
visualize the response waveform and shows that it is a slow wave
fluctuating at the sentential rate. Furthermore, it is shown here that the
response does not show significant build up or adaptation when the
transient response to sound onset is removed. This means that, in
contrast to the 40-Hz aSSR, which takes more than 10 cycles of the
stimulus to stablize (Ross et al., 2002), neural entrainment to phrases/
sentences stablizes from the 2nd cycle of the stimulus. Since the
experiment being analyzed here employs only sentences with a simple
and predictable syntactic structure, the current results only show that
the neural generators of the phrasal/sentential-rate responses can
quickly follow stimuli that are easy to parse. Future studies are needed
to investigate whether neural parsing of more complex and less
predictable syntactic structures is incremental or whether it takes time
to build up (Townsend and Bever, 2001).

Inter-subject correlation of neural responses to continuous stimuli

When listening to the same speech recording or when watching the
same movie, very slow fluctuations of cortical activity measured by
fMRI show a high degree of correlation between subjects, in broad
neural networks involved in speech/movie processing (Hasson et al.,
2015; Hasson et al., 2004; Lerner et al., 2011). Recent MEG/EEG/
ECoG studies have also revealed that electrophysiological activity below
10 Hz shows synchronization between subjects during speech listening
and movie viewing (Chang et al., 2015; Dmochowski et al., 2014;
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Honey et al., 2012; Lankinen et al., 2014). Inter-subject correlation can
be observed in two types of experiments. One is that different subjects
are recorded simultaneously, with possible interactions with each other
(Dumas et al., 2010; Hari and Kujala, 2009). Another type of experi-
ments, including the current study, is that different subjects are
recorded in separate sessions although they are exposed to the same
sensory stimulus. In these experiments, the synchronization between
neural responses in different subjects arises from the neural synchro-
nization to the common stimulus. Inter-subject correlation serves as a
useful measure to detect stimulus-synchronous neural activity.
Furthermore, since inter-subject correlation can be calculated based
on single trials, it can be applied as long as the same stimulus is
presented to each subject, not requiring repetitions of the same
stimulus within a subject.

In summary, this study extracts the waveform of neural activity
entrained to hierarchical linguistic structures by maximizing the inter-
subject correlation. The ISCCA method separates neural tracking of
different linguistic levels to different components, and provides a useful
tool to extract stimulus-synchronous neural activity from single trial
neural recordings.
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