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Abstract
We study the implementability of quota policies in assignment games with constraints,
where the planner can set a quota system before the allocation of resources. The
distributional constraint specifies demand floors for subgroups of agents. In addition,
the planner contends with a group influence constraint, where a larger group of agents
exercises more significant influence on a quota policy. We completely characterize the
set of all implementable quota systems and provide a game-theoretic interpretation for
the implementability condition.Wealso characterize the extremepoints of the polytope
defined by the implementable demand floor quotas, and study optimal demand floors
in a class of two-stage quota-setting games.

1 Introduction

Many assignment and matching markets are regulated by various forms of distribu-
tional constraints, e.g., explicit quotas and non-quota schemes like race-conscious
policies. One prominent example is the “regional cap" in the Japanese residency
matching program that matches hospitals with doctors (Kamada and Kojima 2015). To
regulate the geographical distribution of doctors, the total number of doctors matched
within a region is subject to a “regional cap." Another example is themajority quotas in
the Boston school choice program, where diversity constraints limit the demographic
distributions of admitted students at public schools (Abdulkadiroğlu and Sönmez
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2003).1 Similarly, in the Chinese college admission problem (Gaokao), every uni-
versity has its own quota system on the numbers of admitted students from different
provinces as well as out-of-province quotas for minority groups. The quota policies
are also widely used in other settings. During the Covid-19 pandemic, the policymak-
ers and healthcare professionals implemented reserve policies to ensure the equitable
distribution of ventilators and intensive care units (ICUs) for various regions and pop-
ulation groups (Pathak et al. 2023). Such quota policies are highly controversial and
have continuously influenced ballot initiatives, lawsuits, and public opinion.2

Inmanymarkets, quotas remain stable over long periods and are often taken as given
in the economic analysis. Anecdotally, these quotas are shaped by norms, customs,
and precedents, as well as legislative bargaining among interested parties over years
and decades. For example, the use of explicit quota systems for minority applicants
in the U.S. university admissions was ruled down in Bakke v. California Board of
Regents, and Gratz v. Bollinger respectively, while Grutter v. Bollinger permitted
race-conscious policies. Another example is the admission quota system of Tsinghua
university in China, which dates back to the time when the school was initiated, where
the admission quotas for each province were distributed according to the financial
contribution of each province. Since any change in the existing quota systemmay have
a strong redistributive effect on many interested parties, reforms of quota systems are
usually either politically infeasible or less progressive.3

However, quotas are changing regularly over a certain period of time in some
markets of practical interest. The policymakers can adjust quotas for under-represented
groups based on historical data and demographic trends. For example, in school choice,
if a certain ethnic group is under-represented compared to the regional population, the
quota for that group can be increased to achieve a more balanced representation.4

During the Covid pandemic, quota policies in many countries underwent periodic
reviews, taking into account the changing dynamics of the pandemic. Adjustments
were made based on shifts in infection rates and the availability of testing supplies.
Often, quota policies are influenced not just by policymakers but also by the lobbying
efforts of various interested groups. Economies of scale often occur when groups unite
their forces, e.g., combining two groups has a greater influence on a quota policy than
if the groups act independently (Shapley 1971; Austen-Smith and Wright 1994).5

1 In June 2023, overturning decades of precedent, the U.S. Supreme Court ruled that it is unconstitutional
for colleges, universities, and professional schools to consider race as one factor in deciding whom they
will admit.
2 For the literature on race-conscious affirmative actions, see for example Chan and Eyster (2003), Fryer
et al. (2008), and Chan and Eyster (2009), where the literature finds that color-blind affirmative action policy
is less efficient than the optimal color-sighted policy that achieves the same degree of racial diversity.
3 An example is Proposition 209 in California (1996), which banned affirmative actions in public employ-
ment, education, and contracting. Critics argue that this reform led to a decrease in diversity at California’s
public universities. This reform has been seen by some as a step backward in promoting equal opportunities.
4 The evolution of quotas in college admissions in China is an example. Each year, when the central
government pushes local authorities to draft their plans before the end of the year, it will clarify how to
adjust admission quotas for different regions, which is the crucial factor for local authorities to adjust their
policies. The final outcome of each school’s quotas is determined by the bargaining among three parties:
the central government, local authorities, and the school.
5 Consider a doctor-hospital matching problem. If hospitals from both regions form a coalition, their
combined demand might carry more weight. They could argue that boosting physician numbers in both

123



Quota Implementation in Assignment Games

In this paper, we study the implementability of quota policies in two-sided assign-
ment models (e.g., Shapley and Shubik 1971; Bogomolnaia and Moulin 2001; Budish
et al. 2013).We assume that the planner can set a collection of distributional constraints
before running a market, including demand floor quotas for subgroups of agents and
supply ceiling quotas for subsets of goods. In addition, the planner faces a class of
lobbying constraints which we call group influence constraints. For the demand side,
we assume a combination of two groups of agents has a greater influence on the quota
policy than two separate groups. For the supply side, we assume a combination of
two groups of suppliers has a smaller influence than two separate groups (e.g., due to
public interests). We formally introduce such group influence constraints by assuming
demand floor quotas to be supermodular and supply ceiling quotas to be submodu-
lar. We investigate a joint implementation of the distributional constraints and group
influence constraints.

Using a network flow approach, we completely characterize all implementable
quota systems. Intuitively, the implementability condition requires that for any subset
of agents and any subset of goods, the demand and supply are approximately balanced.
We relate this condition to convex games (e.g., Shapley 1971), where we establish an
equivalence between the implementability and the non-emptyness of the ‘joint core’ in
a pair of games induced by quotas.We then use the implementability condition to study
a two-stage quota design game, where at the first stage, the planner sets demand floor
quotas with ceiling quotas being given, and in the second stage, a market works in a
decentralizedway given the quotas.We provide a characterization of the set of extreme
points of demand floor quotas. Extremal quotas are useful:When the objective is linear
or convex in quotas, the optimal solution is guaranteed to occur at an extreme point;
When the objective is nonlinear, the extreme points provide a finite set of candidate
solutions and reduce the search space to a manageable set.

Our implementation problemand results are closely related toBudish et al. (2013) in
several aspects. Budish et al. (2013) characterize the set of feasible random allocations
for indivisible goods and obtain a generalization of the Birkhoff-von Neumann theo-
rem for bihierarchical constraints. In their implementation problem, they ask whether
a random allocation can be decomposed as a convex combination of feasible pure
allocations. Their problem assumes that quotas are fixed and implementable, while in
our problem, quotas are variable. Hence, the two implementation problems are solved
at two different stages and are complementary for the design and implementation.
Different from their universal implementation, we consider a quota-dependent imple-
mentation, where the group influence constraints are present as a side-constraint on
quotas.

Our approach to optimal quota design borrows tools from the reduced-form auctions
(e.g., Matthews 1984; Border 1991; Che et al. 2013; Goeree and Kushnir 2023; Lang
and Mishra 2024) and network flow approach to mechanism design (e.g., Vohra 2011;
Che et al. 2013). Similar to characterizing the implementability condition in reduced-
form auctions, characterization of implementable quotas is required to find an optimal
quota system. Che et al. (2013) develop a network flow approach to obtain a reduced-

areas would improve overall health outcomes. Moreover, lobbying together could underscore the broad
nature of doctor shortages, making their case more compelling to policymakers.
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formcharacterizationwith paramodular constraints on quotas.Weuse the networkflow
approach for our quota-dependent characterization. In contrast to their implementation
on multiunit auction markets, which is one-sided, we consider an assignment market
and our notion of sub(super-)modularity is two-sided.
LiteratureReview.Our paper contributes to the literature onmarket designwith reser-
vation policies. Kojima (2012) shows that majority quotas on the number of majority
students can hurt minority students. To overcome the detrimental effect of major-
ity quotas, Hafalir et al. (2013) introduce policies of minority reserves. Ehlers et al.
(2014) and Fragiadakis and Troyan (2016) discuss minority reserves withmultiple pri-
ority levels and mechanisms with hard lower quotas. Echenique and Yenmez (2015)
introduce choice functions that reflect the diversity constraints but also satisfy the sub-
stitutes property. Nguyen and Vohra (2019) study stable matching with proportionality
constraints that require proportional soft bounds instead of ex ante absolute numbers
of quotas. Celebi and Flynn (2021) study the trade-offs between using minority quotas
and score subsidies in affirmative action. Pathak et al. (2023) propose a reserve system
for medical resources with multiple categories and a category-specific priority order
is used to prioritize individuals for units in each category. Our paper differs from the
existing literature in several aspects: The literature usually assumes that quotas are
fixed (e.g., a hard constraint) while we assume them to be a policy choice. Second, we
assume a quota designer itself may be subject to side-constraints on quotas. Finally, the
literature focuses on design of algorithms that find desirable (e.g., stable or fair) out-
comes given reserves and rarely optimizes a global objective. Instead, we assume that
the planner has a welfare objective and can optimize over all implementable quotas.

There is a recent small literature on studying quotas as a design variable inmatching
problems. Afacan et al. (2024) study an allocation of extra quotas above some baseline
quotas in school choice. They introduce a constrained efficient matching which is fair
and efficient at some (implementable) quota and is not Pareto dominated by other fair
and efficient quotas at other quotas. They introduce a simple myopic algorithm that
finds constrained efficient matchings among all quotas. Kumano and Kurino (2024)
introduce an ex-post student-optimal stable matching that is stable at some (imple-
mentable) quota, and is not Pareto dominated by any stable matching at other quotas,
and define the associated quota as optimal. They propose a quota adjustment process
that finds the optimal quota. One difference between their papers and ours is that in
theirmodels the optimal quotas andmatchings are simultaneously foundbyalgorithms,
while we assume quotas andmarket outcome are determined in two independent steps.
Bobbio et al. (2024) study the problem of jointly deciding how to allocate a budget
of additional quotas and finding a student-optimal assignment by an integer program-
ming approach. While their model does not consider distributional constraints, their
program can further incorporate such constraints and the implementability results can
become useful.

2 Model

Let N be a finite set of n agents (e.g., students, hospitals, patients, buyers) and let O
be a finite index set of m goods (e.g., schools, doctors, medical resources, sellers).
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Each type j ∈ O of goods can have more than one units; that is, it can be either
private goods or club goods. Each agent can demand more than one type of goods.
Let E = N × O denote the set of all possible agent-good pairs. An assignment is
described as a matrix x = (x(i, j)) ∈ R

E+ indexed by all agents and goods, where
each entry x(i, j) is a real-valued quantity of good j assigned to agent i . Without loss
of generality, we assume that agent i demands at most one unit of good j :

0 ≤ x(i, j) ≤ 1, ∀ (i, j) ∈ E . (1)

For any vector x ∈ R
E , I ⊆ N , and J ⊆ O , we denote x(I × J ) as the sum over

i ∈ I and j ∈ J of x(i, j).
Distributional constraints. Distributional policies can be imposed on agent-good

pairs. For illustration, we focus on demand floor and supply ceiling constraints. For
every subset A ⊆ N of agents, let d(A) ∈ R+ denote the floor quotas assigned to A
for all goods, with d(∅) = 0. The demand floor constraints are represented by

x(A × O) ≥ d(A), ∀ A ⊆ N . (2)

For each subset B ⊆ O of goods, let c(B) ∈ R+ denote the ceiling quotas assigned
to B for all agents, with c(∅) = 0. The supply ceiling constraints are given by

x(N × B) ≤ c(B), ∀ B ⊆ O. (3)

We call (c, d) a quota system. We say an assignment x = (x(i, j)) is feasible
if x satisfies (1), (2), and (3). Notice that we assume divisible goods which only
require (c, d) to be nonnegative and real-valued. So we will not distinguish integral
and fractional assignments.

Ourmodel covers many important practical situations. The examples of the demand
floor constraints include the minimum numbers of course seats for the students from
eachdepartment; theminimumquotas for rural hospitals in thematchingprograms; and
the reserves of medical resources for the groups with different traits. The examples
of the supply ceiling constraints cover school choice with the majority quotas and
auctions where the large suppliers are regulated by antitrust policies.

Group influence constraints. We assume the planner must deal with power con-
straints on quotas besides the distributional constraint. For the demand side, consider
two disjoint groups of agents that can form a large coalition to require a larger demand
floor quota. The coalition can convey broader needs and has a higher influence on the
policy than the two smaller groups. For the supply side, suppose two groups of firms
form a coalition to advocate a larger quota. The regulator, who concerns unfair compe-
tition, may trigger more intensive regulation.6 This could lead to a reduced influence
on policy compared to those of independent firms.

6 Some literature discussed set-asides and competition policies in auctions. Pai and Vohra (2012) show
that a flat subsidy can be the most efficient auction design that achieves a distributional requirement. Athey
et al. (2013) find that compared to set-asides, subsidizing small bidders would increase revenue with little
efficiency cost.
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To model these group influence constraints, we introduce the following notions
of complementarity and substitutability. Let U be a finite ground set. We say a set-
function f : 2U → R+ ∪ {−∞} is supermodular if (i) f (∅) = 0 and (ii) f satisfies

f (S ∩ T ) + f (S ∪ T ) ≥ f (S) + f (T ), ∀ S, T ⊆ U .

We define f as submodular if − f is supermodular and as modular if (ii) holds with
equality.

Definition 1 (c, d) satisfies two-sided paramodular group influence constraints, if
c : 2O → R+ is submodular and d : 2N → R+ is supermodular. We say (c, d) is
modular, if both c and d are modular.

Supermodular demand floor quotas require that for any two disjoint coalitions of
agents, S and T , their joint influence on the quota policy (e.g., d(S ∪ T )) is greater or
equal to their independent influences (e.g., d(S) and d(T ) respectively). Submodular
supply ceiling quotas reflect a scenario where the government’s public initiatives (e.g.,
competition and health policies) are the priorities such that interested groups (e.g.,
firms, hospitals, etc.) opposed to the initiatives have less room to influence the quota
policy: (1) The regulator is more skeptical of a very large lobbying group and imposes
a more stricter regulation; (2) A larger lobbying group has a higher coordination
cost due to regulation. Modular problems assume that there is no complementarity or
substitutability.

Remark 1 Che et al. (2013) introduce paramodular constraints in multi-unit auc-
tions. Their model requires sub(super-)modularity on the same ground set defined
by the agent set, and hence is a problem with one-sided market. Our model assumes
sub(super-)modularity on two different ground sets, which reflect the two-sided nature
of assignment markets.

We are ready to introduce the notion of implementable quota systems for a planner.

Definition 2 A quota system (c, d) is implementable, if there exists a feasible assign-
ment x ∈ R

E under (c, d).

2.1 Coalitional games induced by quotas

Before presenting our main result, we discuss an alternative approach to our model
from a cooperative game perspective.7 A given quota system can be decomposed into
two TU games: a value (sharing) game and a cost (sharing) game, where quantities
are now measured by monetary units. In a value game, a demand quota for a coalition
represents the secured payoff of the coalition, while in a cost game, a supply quota
represents the secured cost of a coalition. Different from classical problems, the two
games are not played independently: for each pair (i, j), the payoff of player i ∈ N
is the cost of player j ∈ O . This implies the stable allocations of the two games must
be coupled, e.g., a stable allocation in one game may not be implementable without
joining of the players in the other game, and vice versa.

7 We thank the Advisory Editor for suggesting us this issue.
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Formally, consider a quota system (c, d) over N and O . Define a value game (N , d)

with player set N and characteristic function d. Define a cost game (O, c) with player
set O and cost function c. We call ((N , d), (O, c)) a pair of marginal games.8 For
any value distribution x ∈ R

N , let x(A) := ∑
i∈A xi for each A ⊆ N . For any cost

distribution x ∈ R
O , let x(B) := ∑

j∈B x j for each B ⊆ O . Then for each marginal
game, the core of the game is defined by

core(N , d) = {x ∈ R
N |x(N ) = d(N ), x(A) ≥ d(A), ∀A ⊆ N },

and

core(O, c) = {x ∈ R
O |x(O) = c(O), x(B) ≤ c(B), ∀B ⊆ O}.

Suppose further c(N ) = d(O). In this case, a feasible assignment x must satisfy

x(N × O) = d(N ) = c(O). (4)

For a feasible assignment x ∈ R
E , define themarginal assignments of x by

y(i) := x({i} × O), (5)

z( j) := x(N × { j}). (6)

There y(i) corresponds to the payoff of player i in game (N , d) and z( j) to the cost
of player j in (O, c). Thus x is a feasible assignment implies y ∈ core(N , d) and
z ∈ core(O, c), that is, the core of each marginal game must be non-empty.

Conversely, suppose the cores of the marginals games are non-empty. Pick any
y∗ ∈ core(N , d) and z∗ ∈ core(O, c). Then one question is: does there exist a
market assignment x∗ ∈ [0, 1]E such that (y∗, z∗) are the marginal assignments of
x∗?

Definition 3 Let ((N , d), (O, c)) be a pair of marginal games (i.e., a whole game)
with d(N ) = c(O). We say (y, z) ∈ R

N × R
O is a joint-core vector if

(i) y is in the core of game (N , d); and
(ii) z is in the core of game (O, c); and
(iii) (y, z) are the marginals of some assignment x ∈ [0, 1]E .
The definition shows that the existence of a stable (i.e., core) allocation in each

marginal game need not to imply a stable allocation for the whole game, as players in
one game may not be able to implement their own allocation without the presence of
the players in the other game. Therefore, the whole game requires a stronger condition
to ensure stability (see Theorem 2).

The following result follows trivially from the above definitions and establishes an
equivalence between quota implementability and non-emptyness of a joint core in the
corresponding pair of marginal games.

8 Here marginal games refer to marginal probability and should be distinguished from marginal product in
the value theory.
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Lemma 1 Let (c, d) be a quota system with d(N ) = c(O). Then (c, d) is imple-
mentable if and only if the pair of marginal games ((N , d), (O, c)) has a non-empty
joint-core.

3 Characterization

Theorem 1 completely characterizes the set of all implementable quotas with distri-
butional and group influence constraints.

Theorem 1 Suppose (c, d) is two-sided paramodular. (c, d) is implementable if and
only if for all A ⊆ N and B ⊆ O,

d(A) − c(B) ≤ |A||Bc|. (7)

The characterization inequality (7) can be interpreted as a comparative balance
between the quota floors of a set of agents and the quota ceilings of a set of goods.
That is, the excess demand floor quota d(A) over the supply ceiling quota c(B) should
not exceed the size of set A times the number of goods not in set B. This ensures
that if there is an imbalance between demand and supply, enough non-quota-restricted
goods are available which can be used to fulfill additional demand of agents in the set
A.

We use a simple 3 agents-3 goods example to illustrate how Theorem 1works when
condition (7) holds, and by a minor change on the quotas, (7) does not hold, i.e., the
implementability is upset.

Example 1 Let N = {i1, i2, i3} and O = { j1, j2, j3}. Consider the following (agent)
symmetric demand quotas and (good) symmetric supply quotas: for all i, i ′ ∈ N and
j, j ′ ∈ O ,

d(i) = 1, d(i, i ′) = 3, d(N ) = 7,

c( j) = 3, c( j, j ′) = 5, c(N ) = 7.

It is easy to verify that (c, d) is two-sided paramodular and satisfies all inequalities in
(7). From Theorem 1, (c, d) is implementable, e.g., the allocation x ∈ R

9 defined by
x(i1, j3) = 0, x(i2, j2) = 0, and x(i, j) = 1 otherwise satisfies all the above quotas
and hence is a feasible assignment. Consider modifying the supply quotas c by the
following submodular quotas c̃:

c̃( j1) = 0, c̃( j2) = c̃( j3) = 5,

c̃( j1, j2) = c̃( j1, j3) = 5, c̃( j2, j3) = c̃(N ) = 7.

We claim that (c̃, d) violates condition (7). In particular, for testing set (A, B) =
(N , { j1}), the inequality

c̃({ j1}) + |N ||O\{ j1}| ≥ d(N )
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is violated. Therefore, by Theorem 1 there exists no feasible assignment for (c̃, d).
Indeed, if there exists a feasible solution x , we must have x(i, j1) = 0 for all i ∈ N
given c̃( j1) = 0. But then x(N × O) ≤ 6 < 7 = d(N ). Contradiction.

Remark 2 Theorem 1 assumes that each agent demands at most one unit of each good.
Our network flow characterization can be easily extended to the case of multiple-
unit demands (see the proof of Theorem 1). Specifically, for each agent-good pair
(i, j), let u(i, j) ≥ 0 denote the upper quota. Then the upper bound |A||Bc| in the
characterization condition (7) can be modified as u(A × Bc).

Remark 3 A characterization of implementability with distributional constraints only
appears to be difficult. Theorem 1 shows that a joint implementation of distributional
constraints and side-constraints can lead to a simple characterization.

Combined with Lemma 1, Theorem 1 has game-theoretic interpretations. If (c, d)

is two-sided paramodular, then (N , d) is a convex value game and (O, c) is a concave
cost game. FromShapley (1971), the core of each game is non-empty (e.g., the Shapley
value defined as the average of marginal values is in the core). Notice that this does
not immediately ensure that the whole game has a non-empty joint-core. However,
Theorem 1 characterizes the additional constraints on (c, d) for a joint-core to exist.

Theorem 2 Let ((N , d), (O, c)) be a pair of marginal games where (N , d) is a convex
value game and (O, c) is a concave cost game. ((N , d), (O, c)) has a non-empty joint-
core if and only if (7) holds.

3.1 Proof of Theorem 1

We use a network flow approach to derive the implementability condition in Theorem
1. We transform the implementability problem into an independent flow problem
and invoke a maximum flow-minimum cut theorem to obtain a characterization of
implementability. Below we outline the formulation of the implementation problem
(c, d) as an independent flow problem (Lemma 2) and defer the remaining proof of
Theorem 1 to the Appendix.

The flow network construction. We first review some basics about polymatroid
and independent flows (see e.g., Fujishige 2005). Let U be a finite ground set and
f , g : 2U → R. We say the set (U , f ) := {x ∈ R

U+ : x(S) ≤ f (S), ∀S ⊆ U } is a
polymatroid if f is submodular, and the set (U , g) := {x ∈ R

U+ : x(S) ≥ g(S), ∀S ⊆
U } is a contrapolymatroid if g is supermodular. Consider a capacitated network

(G = (S+ ∪ S−, A), c̄, c, (S+, ρ+), (S−, ρ−))

where G is a bipartite graph with a vertex set consisting of sources S+ and sinks S−,
and A is the set of arcs from sources to sinks. We have a upper and lower capacity
function c̄, c : A → R+, a contrapolymatroid (S+, ρ+), and a polymatroid (S−, ρ−).
For each subset of verticesU ⊂ S+ ∪ S−, denote �+(U ) (and �−(U )) the set of arcs
leaving (and entering) U . A function ψ : A → R+ is called a feasible independent
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flow if it satisfies

∑

a∈�+(S)

ψ(a) ≥ρ+(S), ∀S ⊆ S+, (8)

∑

a∈�−(T )

ψ(a) ≤ρ−(T ), ∀T ⊆ S−, (9)

c(a) ≤ ψ(a) ≤ c̄(a), ∀a ∈ A. (10)

We call (8)–(9) the polymatroidal boundary constraints on the source set S+ and
the sink set S− and (10) the flow capacity constraint for each arc. The independent
flow problem is to determine whether there exists a feasible flow satisfying (8)–(10).

We now formulate the implementation problem (c, d) as an independent flow
problem. The problem defines an independent flow network P = (G = (N ∪
O, E), c̄, c, (N , d), (O, c)). Here G is a complete bipartite graph with the source
set N and the sink set O , and E consists of arcs from each i ∈ N to j ∈ O . We define
c(i, j) = 0 and c̄(i, j) = 1 for each arc (i, j) ∈ E . We define ρ+ = d and ρ− = c.
Since we assume −d and c are submodular, (N , d) is a contrapolymatroid and (O, c)
is a polymatroid. Lemma 2 below is central for the proof of Theorem 1.

Lemma 2 (c, d) is implementable if and only if the independent flow problem P =
(G = (N ∪ O, E), c̄, c, (N , d), (O, c)) has a feasible flow.

Remark 4 For one-sided auction markets, Che et al. (2013) construct a polymatroidal
flow network for their implementation problem. While our problem cannot transform
into a one-sided auction problem with paramodular constraint, it can be shown that
every independent flow problem has an equivalent representation as a polymatroidal
flow problem (see Fujishige 2005).

3.2 Example: Partition-generated demand quotas

An example of Theorem 1 is the case of demand floor quotas generated by some
collection of target groups S ⊆ 2N\{∅} that are partitional. We show that for this
class of demand floor quotas, we can obtain a more tractable reduction of the set of
implementable quotas.

Let S = {Si }i∈I be a partition of N with I being the index set. A function d :
2N → R+ is defined as S-generated, if d(∅) = 0 and for every A = ∪i∈I Ai with
Ai ⊆ Si for each i ∈ I, it holds d(A) = ∑

i∈I d(Ai ). Intuitively, for any S-generated
demand floor quotas, the quotas can be supermodular within each target group but are
additive across different target groups. It is easy to verify that if d is S-generated by
some partition S, then d is supermodular. From Theorem 1, we obtain the following
characterization for S-generated demand floor quotas: (c, d) is implementable if and
only if for all (Ai )i∈I with each Ai ⊆ Si and all B ⊆ O ,

∑

i∈I
d(Ai ) − c(B) ≤

∑

i∈I
|Ai ||Bc|. (11)
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Whenboth thedemandand supplyquotas aremodular, e.g.,S = {{1}, {2}, . . . , {n}},
Theorem 1 reduces to the following simpler characterization.

Corollary 1 Suppose (c, d) is modular. Then (c, d) is implementable if and only if for
all A ⊆ N and B ⊆ O,

∑

i∈A

d(i) −
∑

j∈B
c( j) ≤ |A||Bc|. (12)

4 Supermodular floor polytope

Theorem 1 characterizes the set of all implementable quota systems. It also implies a
characterization of supermodular and implementable demand floor quotas with supply
ceilings being given. For any given ceiling quota system c, define

f (A) := min
B

[c(B) + |A||Bc|]. (13)

We say f is symmetric if for each A ⊆ N , f (A) only depends on the cardinality
of A; and f is monotone if S ⊂ T implies f (S) ≤ f (T ). The following result is
immediate.

Lemma 3 The bound f given by (13) is submodular, monotone, and symmetric. More-
over, f (A) > 0 for all A �= ∅.

We define the cone of all supermodular demand floor quotas by

P = {d ∈ R
2N+ : d(S ∩ T ) + d(S ∪ T ) ≥ d(S) + d(T ), ∀ S, T ⊆ N , d(∅) = 0}.

(14)

Then P is a pointed cone and hence finitely generated by its extreme rays. We define
the set of all implementable demand floor quotas by

Q = {d ∈ R
2N+ : d(S) ≤ f (S), ∀ S ⊆ N , d(∅) = 0}. (15)

Then Q is a hyperrectangle 0 ≤ d ≤ f (i.e., a box). We denote the set of all super-
modular and implementable demand floor quotas by

F = P ∩ Q. (16)

We call F a supermodular floor polytope.
In other words, for a policymaker that determines floor quotas, her feasible choice

set is a supermodular floor polytope. It is worth noting that characterizing the extreme
rays of supermodular cones appears to be a challenging task, as indicated by Shap-
ley (1971). This implies that characterizing the extreme points of the supermodular
floor polytope, as defined by inequalities (14) and (15), is non-trivial or even more
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challenging. To develop some intuition on the structure of the extreme points of F ,
consider the following two examples.

Example 2 Let N = {1, . . . , n} and let S1, S2, S3 ⊂ N , with Si ∩ S j = ∅, be three
subgroups, with |S1| + |S2| < |S3|, e.g., S1 and S2 are minority groups. Suppose
only two minority groups have influence on quotas, both separately and jointly, while
individuals or smaller coalitions within each minority group, as well as the majority
group has no influences. The corresponding demand floors are defined by

d(A) =

⎧
⎪⎪⎨

⎪⎪⎩

d(S1) if S1 ⊆ A, S1 ∪ S2 � A,

d(S2) if S2 ⊆ A, S1 ∪ S2 � A,

d(S1 ∪ S2) if S1 ∪ S2 ⊆ A,

0 Otherwise.

Then d is supermodular. Moreover, (d(1), d(2), d(12)) := (d(S1), d(S2), d(S1∪ S2))
are the essential demand floor quotas. For a given f , let ( f (1), f (2), f (12)) :=
( f (S1), f (S2), f (S1 ∪ S2)). From the definition of d and Lemma 3, it is easy to check
that d(1) ≤ f (1), d(2) ≤ f (2), d(12) ≤ f (12) implies d ≤ f . So we can restrict
attention to the problem in R

3.
The box Q ⊂ R

3 has 8 vertices: {0, f (1)} × {0, f (2)} × {0, f (12)}. The super-
modular cone P ⊂ R

3 is given by

−d(1) − d(2) + d(12) ≥ 0, (17)

d(1) ≥ 0, (18)

d(2) ≥ 0. (19)

We claim that the cone has 3 extreme rays (up to positive scaling):

(0, 0, 1), (1, 0, 1), (0, 1, 1).

To see this claim, notice that a nonzero d ∈ R
3 is an extreme ray if and only if there

are 2 linearly independent constraints in (17)–(19) binding at d. If (17) and (18) are
binding, we get d = (0, α, α), with α > 0. If (17) and (19) are binding, we get
d = (α, 0, α). If (18) and (19) are binding, we get d = (0, 0, α).

We now determine the extreme points of F . From the definition of extreme points,
d ∈ R

3 is an extreme point of F if there are 3 linearly independent constraints in
(17)–(19) and 0 ≤ d ≤ f binding at d. Notice that each extreme ray of the cone
intersects the faces of the box 0 ≤ d ≤ f at d = 0 and a unique nonzero point d ′.
Since there are 3 linearly independent constraints binding at d ′, it is an extreme point
of F . These points give the following 4 extreme points of F :

(0, 0, 0), (0, 0, f (12)), ( f (1), 0, f (1)), (0, f (2), f (2)).

There are two other extreme points of F that correspond to two vertices of the box:

( f (1), 0, f (12)), (0, f (2), f (12)).
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Fig. 1 Supermodular floor polytope

Finally, there are 2 extreme points that neither correspond to the extreme rays of
the cone nor to the vertices of the box, but are generated by a combination of conic
constraints and box constraints:

( f (1), f (12) − f (1), f (12)), ( f (12) − f (2), f (2), f (12)).

Hence, there are 8 extreme points for F in total. For f (1) = f (2) = 2, f (12) = 3,
the supermodular floor polytope is shown in Fig. 1.

The above example shows that some extreme points are generated by the inter-
section of the extreme rays of the supermodular cone and the box (type-I), while the
remaining ones are either the extreme points of the box (type-II), or are generated by
a combination of conic and box constraints (type-III). The following example shows
that the number of type-I extreme points grows very quickly when the number of
agents increases.

Example 3 Suppose N = {1, 2, 3, 4}. Then there are 15 possible non-empty subsets
of N and d ∈ R

15+ . It is well known that for |N | = 4, the supermodular cone has 37
extreme rays (Shapley 1971). These rays can be classified into 10 classes of permutably
equivalent types. Using this result, we can find 10 (permutably equivalent) candidates
of the extreme points generated by the intersection of the supermodular cone and the
box. For illustration, we consider the first class of extreme rays (up to positive scaling)
given by

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234
d1 0 0 0 0 1 1 1 1 1 0 2 2 2 2 4

That is, the class contains 6 extreme rays that differ from d1 only in the quotas of
2-agent coalitions, with one coalition’s quota equal to 0 and other coalitions’ quotas
equal to 1.
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To find the intersection of this extreme ray and the boundary of the box, below we
show that for the box constraints d(12) ≤ f (12), d(123) ≤ f (123), and d(1234) ≤
f (1234), only the last inequality can be binding. We first claim that the first two cases
are impossible for otherwise some other box constraint must be violated. Suppose
d(12) = f (12). Then d is on the ray d1 implies

d(123) = 2d(12) = 2 f (12).

On the other hand, the box constraints require

d(123) ≤ f (123).

Since f is submodular, symmetric and strictly positive, e.g., f (12) = f (13), and
f (1) > 0, we have 2 f (12) = f (12) + f (13) ≥ f (1) + f (123) > f (123). Contra-
diction.

Similarly, we can rule out the case d(123) = f (123). Finally, it can be verified that
all box constraints can be satisfied when d(1234) = f (1234). So we find one extreme
point that is the intersection point of an extreme ray and the boundary of the box.

The above observation generalizes and we have the following partial characteri-
zation of the extreme points of F . Before stating the theorem, we introduce some
notations. Let 0 denote the zero vector in R

n . Let P ⊂ R
n be a polytope. We say two

extreme points of P are neighbors if the line segment connecting them is an edge (i.e.,
a one-dimensional face) of P . For each extreme point v ∈ P , let N (v) denote the set
of neighbors of v.

Theorem 3 (Extreme points of the supermodular floor polytope) Let F be the super-
modular floor polytope and let P be the supermodular cone in problem (P-b).

(i) Every extreme ray of P contains exactly one non-zero extreme point of F that
is a neighbor of 0.

(ii) Every non-zero extreme point of F that is a neighbor of 0 corresponds to an
extreme ray of P .

The theorem implies that in general there are two classes of extreme points of the
supermodular floor polytope, namely, the non-zero extreme points that are neighbors
of the zero vector and other non-zero extreme points that are not neighbors of the
zero vector. For the first class, there is a one-to-one correspondence between the
extreme points of the polytope and the extreme rays of the supermodular cone, while
the second class corresponds to the extreme points of the box that are not eliminated
by the supermodular constraints as well as some newly generated extreme points.
For illustration, consider Example 2. The first three non-zero extreme points are the
neighbors of the zero vector and hence they constitute the first class of the extreme
points.

To prove Theorem 3, the following lemma will be useful for our analysis.

Lemma 4 (Ziegler 1995, p. 81) Let P ⊂ R
n be a polytope, v ∈ P be an extreme point,

and let N (v) be the set of its neighbors. Then the cone (based at v) spanned by the
neighbors of v contains P: P ⊆ v + cone{u − v : u ∈ N (v)}.
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Proof of Theorem 3 (i) Let P∗ be the set of the extreme rays of P , which is unique up
to positive scaling. Pick any x ∈ P∗. Notice that for λ > 0 small, λx ∈ Q. So every
extreme ray has a non-empty intersection with Q. Define λ∗ = max{λ : λx ∈ Q}.
Then λ∗ is unique and x∗ := λ∗x ∈ F . We show that x∗ is an extreme point of F .
Suppose not and there exist x1, x2 ∈ F and λ ∈ (0, 1) such that x∗ = λx1+(1−λ)x2.
Then x1, x2 ∈ P and x∗ is a nonnegative linear combination of x1 and x2. So x∗ does
not correspond to any extreme ray. Contradiction. Finally, λ∗x is a neighbor of 0 since
the line segment connecting 0 and λ∗x is an edge of F , i.e., for each interior point y
on the segment, there are n − 1 linearly independent constraints binding at y.

(ii) Let N be the cone spanned by the set N (0) of non-zero extreme points of F
that are neighbors of 0. We only need to show that N = P . First notice that N ⊆ P
since N (0) ⊂ F ⊂ P . On the other hand, from Lemma 4, we have F ⊆ N . From
(i), we have shown that each extreme ray λx ∈ P corresponds to an extreme point
x∗ = λ∗x ∈ F . Hence x∗ ∈ N . Since N is a cone, λx∗ ∈ N for all λ > 0. Hence
P ⊆ N . We conclude that N = P . ��

5 Target group-based quota design

In this section, we study a class of two-stage quota design games. At the first stage
of a game, the planner chooses floor quotas with ceiling quotas being given. At the
second stage, given the floor and ceiling quotas, some market mechanism runs and
an assignment is determined. We assume the planner cannot determine mechanisms
and assignments directly but can only influence the outcome through quotas. We
discuss two examples: (1) an assignment problemwith cardinal utilities and an efficient
mechanism is used at the second stage; and (2) a many-to-one matching problem with
ordinal preferences and a DA mechanism is used at the second stage.

5.1 Assignmentmarket

We first extend our basic model in Sect. 2 to an assignment market, where the agents
have monetary valuations over the goods.

Valuations. We assume that each agent i ∈ N has a monetary valuation v(i, j) for
one unit of good j ∈ O , indicating the matching surplus between agent i and good
j . For any feasible assignment x ∈ R

E and a group S ⊆ N , we can define the total
surplus of group S as follows:

VS(x) =
∑

i∈S

∑

j∈O
v(i, j)x(i, j).

The planner’s objective. We assume that the planner has a complete and transitive
preference over assignments which can be represented by an objective function W :
R

E → R. There are certain target groups of agents, such as minority and majority
groups. The planner values the surpluses of different target groups but with possibly
different welfare weights. To formalize this model, let S ⊂ 2N\{∅} be a collection

123



X. Lang, J. Li

of target groups of agents, where each S ∈ S represents some agents with the same
trait, e.g., age, sex, race, or medical vulnerability. Denote l := |S|. Let λ ∈ R

S+ denote
social weights that assign to each target group S ∈ S a weight λS . One common
scenario is when S consists of two complementary groups, such as a minority group
M ⊂ N and a majority group Mc. So a target group-based welfare objective can be
parametrized by (S, λ).

Below are two examples of welfare objectives based on target groups.
1. The weighted utilitarian welfare. The planner maximizes a λ-weighted social

surplus for the different target groups. The λ-weighted utilitarian objective is given by

U (S, λ, x) =
∑

S∈S
λSVS(x).

2. The weighted Nash’s welfare. The different groups of agents bargain over the
quotas and the surpluses, and the λ-weighted Nash product of the surpluses of these
groups is maximized.9 The λ-weighted Nash product is given by

N (S, λ, x) =
∏

S∈S
[VS(x)]λS .

For welfare objectives with distributional concerns, Ashlagi and Shi (2016) discuss
an allocation problem that maximizes a linear combination of utilitarian and max-
min welfare objectives. Celebi and Flynn (2022) introduce three classes of welfare
objectives in a school choice problemwhere agents’ types determine their ordinal pref-
erences and scores: (i) a λ-utilitarian objective that assigns different welfare weights
to different types; (ii) an objective with a weighted score penalty function for differ-
ent types; and (iii) an affirmative-action-concern objective with separable benefits for
under-represented groups. Our specifications with target group-based objectives are
similar to their first class of objectives.

Quota design game. Fix any ceiling quotas c and let F := F(c) denote the set
of implementable demand quotas given by Theorem 1 (and 3). Let F(d) := F(c, d)

denote the set of feasible assignments given any quotas (c, d). The quota design game
has the following two stages:

In the second stage, given any d, we assume that the planner cannot directly
influence the market allocation outcome, which assumes to be any socially efficient
allocation x∗(d) satisfying:

VN (x∗(d)) = max
x∈F(d)

VN (x). (P-stage 2)

In the first stage, the planner chooses a quota policy to maximize her welfare objective.
Define W ∗(d) := W (x∗(d)). The optimal quota problem is given by

max
d∈F

W ∗(d). (P-stage 1)

9 Our model abbreviates the implementation of a welfare objective e.g., a Nash equilibrium in a Rubinstein
bargaining game among different groups of agents.

123



Quota Implementation in Assignment Games

Below, we provide some analysis on the structure of optimal quotas. Let x, y ∈ R
n .

We denote x ≥ y if xi ≥ yi for all i = 1, . . . , n. Let X ⊂ R
n . We define f : X → R

to be monotone (nonincreasing) if for any x, y ∈ X , the condition x ≥ y implies that
f (x) ≤ f (y). We say y is minimal in X if there is no other vector x in X for which
x ≤ y. The following result provides a sufficient condition on the indirect welfare
function such that the zero floor quotas 0 ∈ F (e.g., laissez-faire) are an optimal
solution.

Proposition 1 If W ∗ is monotone in d on the feasible setF , then d∗ = 0 is an optimal
solution to program (P-stage 1).

When the indirect welfare function W ∗ is monotone, the zero vector is optimal
when it is feasible. We note that the optimal solutions are not unique. There can be
other solutions, including those that are not extreme points of F (See Example 4
below). In the case that the zero vector is not feasible, e.g., there are side-constraints
G on floor quotas besides the distributional and group influence constraints F such
that 0 /∈ F ∩ G, it is easily seen that W ∗ remains monotone on this smaller feasible
set, and hence a minimal floor vector in the set is optimal.

The above proposition implies the following sufficient condition for monotonicity.

Proposition 2 If the planner’s objective W is perfectly aligned with the second stage
allocation rule (i.e., the efficient rule), then W ∗ is monotone.

Proof of Proposition 2 Notice that in the second stage, decreasing each entry in d
enlarges the set of feasible assignments, i.e., a feasible assignment remains feasi-
ble in the new problem with a reduced d. Hence, decreasing d will always weakly
increase the value in the second stage, i.e., the second stage optimal value function
is monotone. When the first stage objective W is equal to the second stage objective,
W ∗ is also monotone. ��

Generally, W ∗ may not be monotone. This non-monotonicity is due to the fact that
when the second stage allocation rule is fixed as the efficient rule, the second stage
always implements efficient allocations.When the planner wishes to implement a non-
efficient allocation, setting zero floors cannot implement such allocations and strictly
positive quotas are preferable. To illustrate non-monotone indirect welfare functions,
let us consider a 3-agents 2-goods example.

Example 4 (Example 2 continued). Let N = {1, 2, 3} and O = {a, b}, where S1 =
{1}, S2 = {2}, and S3 = {3}. Suppose c(a) = c(b) = 2, c(ab) = 3. Suppose it is
common knowledge that agents 1 and 2 have a lower matching surplus than agent
3 for all goods (e.g., as when minority groups have lower average scores in school
choice). Without loss, we assume v(i, j) = vi and 0 < v1 < v2 < v3. The second
stage assignment problem is given by

max
0≤x≤1

∑

i j

v(i, j)x(i, j)

s.t . x(N × { j}) ≤ 2, j = a, b
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x(N × O) ≤ 3

x({i} × O) ≥ d(i), i = 1, 2

x({1, 2} × O) ≥ d(12).

From Theorem 1, we get f (a) = f (b) = 2, f (ab) = 3. Let F denote the set
of supermodular and implementable demand floors. From Example 2, we know that
the extreme points of F are given by (0, 0, 0), (2, 0, 2), (0, 2, 2), (0, 0, 3), (2, 0, 3),
(0, 2, 3). We present all possible integral floors in F , the corresponding efficient allo-
cations and the λ-weighted utilitarian welfare in Table below:

d = (d(1), d(2), d(12)) x∗(i, j) = 1 W (x∗)
(0, 0, 0), (0, 0, 1), (0, 1, 1) 2b, 3a, 3b λ2v2 + 2λ3v3

(1, 0, 1) 1b, 3a, 3b λ1v1 + 2λ3v3
(0, 0, 2), (0, 1, 2), (0, 2, 2) 2a, 2b, 3b 2λ2v2 + λ3v3

(1, 0, 2), (1, 1, 2) 1b, 2b, 3b λ1v1 + λ2v2 + λ3v3
(2, 0, 2) 1a, 1b, 3b 2λ1v1 + λ3v3

(0, 0, 3), (0, 1, 3), (0, 2, 3) 1b, 2a, 2b λ1v1 + 2λ2v2
(1, 0, 3), (1, 1, 3), (1, 2, 3)

(2, 0, 3), (2, 1, 3) 1a, 1b, 2b 2λ1v1 + λ2v2

Notice that allocations implemented by (1, 0, 1), (1, 0, 2), and (1, 1, 2), are not
implementable by any extreme point of F .

Consider the following three welfare objectives.
1. The utilitarian objective: W = VN . That is, let S = {N } and λN = 1 in the

λ-utilitarian welfare. Then W ∗ is monotone: decreasing each entry in d will enlarge
the set of feasible assignments and increase the optimal value in the second stage (and
hence the first stage). Hence, (0, 0, 0) is an optimal solution in the first stage. In this
case, the efficient allocation is given by x∗(2b) = x∗(3a) = x∗(3b) = 1. Moreover,
the first stage problem has other solutions, such as (0, 0, 1) and (0, 1, 1), which are
not extreme points of F .

2. The λ-weighted utilitarian objective: W = λ1V1 + λ2V2 + λ3V3, with each
λi > 0. Consider outcome x(1b) = x(3a) = x(3b) = 1. The outcome is optimal if

λ1v1 + 2λ3v3 ≥ W (x∗(d)), for all d �= (1, 0, 1),

which require λ3v3 ≥ λ1v1 ≥ λ2v2. In this case, W ∗ is not monotone and (1, 0, 1) is
an optimal solution. Notice that this point is not an extreme point of F . On the other
hand, x(1b) = x(2b) = x(3b) = 1 is not implementable generically, since it requires
λ3v3 = λ1v1 = λ2v2.

3. The λ-weighted Nash objective:W = V λ1
1 V λ2

2 V λ3
3 , with each λi > 0. Notice that

for any allocation where only two agents receive goods, the utility of the remaining
agent is zero and the Nash product is zero. On the other hand, the allocation x(1b) =
x(2b) = x(3b) = 1 has a strictly positive Nash product v

λ1
1 v

λ2
2 v

λ3
3 . Hence, (1, 0, 2)

and (1, 1, 2) dominate other integral quotas. We claim that an optimal solution can be
fractional. Consider the following fractional quotas: ( 14 ,

1
4 ,

1
2 ). The efficient allocation

is given by x(1b) = x(2b) = 1
4 , x(3a) = 1

2 , x(3b) = 1. The Nash product is given by
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( 14v1)
λ1( 14v2)

λ2( 32v3)
λ3 . It dominates v

λ1
1 v

λ2
2 v

λ3
3 if ( 14 )

λ1+λ2( 32 )
λ3 ≥ 1. If we further

assume λ1 + λ2 + λ3 = 1, the condition reduces to λ3 ≥ ln 4/ ln 6. In this case, all
integral solutions are dominated and an optimal solution must be fractional.

Summarize (a)–(c), we conclude that depending on the type of welfare function,
the indirect welfare function may be either monotone or non-monotone, the optimal
quotas may be either extreme points or boundary points of the feasible set, and may
be either integral or fractional.

5.2 Matchingmarket

Below we consider a two-sided matching example where players have ordinal prefer-
ences. Consider a doctor-hospital matching problem with regional quotas, where H is
a set of hospitals and D is a set of doctors. Each hospital h ∈ H has a strict preference
�h over the set of subsets of doctors. Each doctor d ∈ D has a strict preference �d

over the set of hospitals. Each hospital h has an upper capacity c(h) ≥ 0 and a lower
capacity l(h) ≥ 0. We assume that �h is responsive (e.g., the ranking of a doctor is
independent of other doctors). We further assume hospitals belong to different regions
in R = {r1, . . . , rn} and each region r ∈ R has a floor quota l(r) ≥ 0 and a ceiling
quota c(r) ≥ 0 (e.g., regional caps).10 The hospitals in the same region may influence
the policy maker and change the floor quota.

A matching μ is a mapping that satisfies μd ∈ H ∪ {∅} for all d ∈ D, and μh ⊆ D
for all h ∈ H , and for each pair (d, h), μd = h if and only if d ∈ μh . A matching
is feasible if l(r) ≤ | ∪h∈r μh | ≤ c(r) for all r ∈ R, and l(h) ≤ |μh | ≤ c(h) for
all h ∈ H . A matching is individually rational if (i) for each d ∈ D, μd �d ∅, and
(ii) for each h ∈ H , d �h ∅ for all d ∈ μh , and |μh | ≤ c(h). That is, no player is
matchedwith an unacceptable partner and each hospital’s capacity is respected.We call
a doctor-hospital pair (d, h) a blocking pair if h �d μd , and either (i) |μ(h)| < c(h)

and d �h ∅, or (ii) d �h d ′ for some d ′ ∈ μh . We say a matching is classically stable
if it is feasible, individually rational, and there is no blocking pair. We say a matching
ismaximally stable if it is feasible, individually rational, and minimizes the number
of blocking pairs.

Gale and Shapley (1962) show that when there are only individual caps, a (classi-
cally) stablematching exists. However, when there are regional caps, a stablematching
may not exist (see Kamada and Kojima (2015) for a discussion). Below we use an
example to show that with floor quotas, the implementability of floor quotas is only
necessary for classic stability.When the DA algorithm is used for the second stage, the
solution may not be feasible. Moreover, there may exist no feasible and individually
rational matching with no blocking pair. In particular, we show that when the quota
policy is too extreme in the sense that only a certain group of hospitals is favored, no
stable matching exists. In this case, we find the maximally stable matchings.

Example 5 Suppose there are three hospitals H = {h1, h2, h3} and three doctors
D = {d1, d2, d3}. We assume for each hospital i , c(i) = 2 and l(i) = 0. There

10 The individual ceiling and floor quotas prevent overstaffing or understaffing at the hospital level and
ensure that hospitals have sufficient staff to maintain quality care, while the regional ceiling and floor quotas
ensure equitable distribution of doctors across different regions, especially in underserved or rural areas.
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are two regions r1 and r2, with h1, h2 ∈ r1 and h3 ∈ r2. The regions’ floor quotas are
l(r1), l(r2) ≥ 0 and ceiling quotas are c(r1) = c(r2) = 2. The hospital and doctor
rank order lists are given by

h1 : d1, d2, d3 d1 : h2, h1, h3
h2 : d2, d1, d3 d2 : h1, h3, h2
h3 : d3, d1, d2 d3 : h3, h1, h2

The implementable demand floors are classified into three cases:
(1) 0 ≤ l(r1) ≤ 2 and 0 ≤ l(r2) ≤ 1. The doctor-proposing DA algorithm

finds the doctor-optimal stable matching given by μ0(d1) = h2, μ0(d2) = h1 and
μ0(d3) = h3,11 which is feasible, individually rational, and with no blocking pair.

(2) 0 ≤ l(r1) ≤ 1 and l(r2) = 2. The above DA matching is no longer feasible. We
claim that there exists no stable matching. Note that in any stable matching, we must
have d3 is matched with h3. Then consider the following four feasible and individually
rational matchings:

μ1(d1) = h1, μ1(d2) = h3, μ1(d3) = h3
μ2(d1) = h2, μ2(d2) = h3, μ2(d3) = h3
μ3(d1) = h3, μ3(d2) = h2, μ3(d3) = h3
μ4(d1) = h3, μ4(d2) = h2, μ4(d3) = h3.

However, none of these matchings is stable, as one of the remaining doctors (d1 or d2)
matched with h3 and the unmatched hospital is a blocking pair. Among all feasible
and individually rational matchings, the unique maximally stable matching is given
by μ2, in which (d2, h1) is the unique blocking pair.

(3) l(r1) = 3 and l(r2) = 0. Any feasible matching requires that d3 is matched
with either h1 or h2. Hence, none of these matchings is stable. We have the unique
maximally stable matching is given by

μ5(d1) = h2, μ5(d2) = h1, μ5(d3) = h1.

When there are regional caps only, alternative notions of stability have been pro-
posed. Kamada and Kojima (2015) introduce a stability weaker than classic stability
in which certain types of blocking pairs are tolerated. They assume that there are some
soft target capacities (c̄(h))h∈H and regions prefer to respect target capacities as much
as possible. Formally, a matching μ is stable if it is feasible, individually rational, and
if (d, h) (with h ∈ r for some r ) is a blocking pair, then (i) |μr | = c(r), (ii) d ′ �h d
for all d ′ ∈ μh , and (iii) either μd /∈ r or |μ′

h | − c̄(h) > |μ′
μd

| − c̄(μd), where μ′
is modified from μ by moving d to h. That is, a blocking pair is legitimate if the
movement of the doctor equalizes the excesses over the target capacities.12

11 For notational convenience, we denote by μ(d) for μd .
12 Kamada and Kojima (2018) generalize this stability concept to a model with general regional constraint
structures and regional preferences. They show that hierarchical constraints is necessary and sufficient for the

123



Quota Implementation in Assignment Games

To compare these alternative stability concepts, we study a simple example with
one region, a regional cap and an individual floor constraint. Notice that the stability
concept inKamada andKojima (2015) is defined in problemswithout floor constraints.
Below we apply this notion with no modification to our problem.

Example 6 Suppose there are three hospitals H = {h1, h2, h3} and three doctors D =
{d1, d2, d3}. We assume for each hospital h, c(h) = 2, and l(h1) = l(h2) = 0,
l(h3) = 1. There is only one region r0 = H , with l(r0) = 0 and c(r0) = 2. Let
c̄(h) = 1 for each h ∈ H be the target capacities. The hospital and doctor rank order
lists are given by

h1 : d1, d2, d3 d1 : h1, h2, h3
h2 : d2, d1, d3 d2 : h1, h2, h3
h3 : d3, d1, d2 d3 : h2, h3, h1

The doctor-proposing DA algorithm finds the doctor-optimal stable matching:

μ0(d1) = h1, μ0(d2) = h1, μ0(d3) = h2.

The matching is not feasible as it violates the regional cap. It can be shown that there
are two maximally stable matchings:

μ1(d1) = h1, μ1(d2) = ∅, μ1(d3) = h3,

μ2(d1) = ∅, μ2(d2) = h1, μ2(d3) = h3.

Note that μ1 and μ2 are feasible and individually rational. For μ1, there are four
blocking pairs (d2, h) for h ∈ H and (d3, h2). For μ2, there are four blocking pairs
(d1, h) for h ∈ H and (d3, h2).

We claim that neither μ1 nor μ2 satisfies stability defined in Kamada and Kojima
(2015). At μ1, each (d2, h) is a legitimate blocking pair: at μ1 the regional cap is
binding and the blocking fills a vacant position (their conditions (i) and (ii)). Also
d2 is assigned unmatched and blocking will violate the regional cap (the first case
of condition (iii)). (d3, h2) is not a legitimate blocking pair, as |μ′

h2
| − c̄(h2) =

|μ′
μh3

| − c̄(μh3) = 0, so (iii) does not hold. Hence μ1 does not satisfy stability. At

μ2, (d1, h1) is not a legitimate blocking pair and hence μ2 does not satisfy stability.13

existence of a stable and (doctor) strategy-proof mechanism. Notice that hierarchy implies submodularity
but not converse. This implies that hierarchical regional caps are always implementable. On the other
hand, this also implies that submodularity may not guarantee the existence of a stable and strategy-proof
mechanism.
13 μ1 andμ2 also do not satisfy stability defined in Kamada and Kojima (2018), in which a doctor-hospital
pair is defined as illegitimate if the movement of the doctor in the pair does not lead to a Pareto superior
distribution of doctors for the regions that control the two involving hospitals and have constraints binding.
Stability requires that a blocking pair is tolerated if it is either infeasible or illegitimate. Consider μ1 in our
example. The pair (d3, h2) is not infeasible. Since r0 controls μ1(d3) = h3 and h2, and there is one layer
of hierarchy, μ′ with d3 moving to h2 cannot be Pareto superior to μ1 for any subregions of r0. Hence the
pair (d3, h2) is not illegitimate. So (d3, h2) is not tolerated.
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Hence, maximal stability is weaker than stability defined in Kamada and Kojima
(2015) for this example.

5.3 Discussion on sequential design

1. Computational burden. Kumano and Kurino (2024) show that for their quota adjust-
ment mechanism, both the first-step algorithm of running the DA mechanism for
an arbitrary quota distribution and the second-step algorithm of finding a quota-
adjustment stable improvement cycle are polynomial. Hence, the entire algorithm
is polynomial.

To see the computational complexity of the two-stage game in Sect. 4, first consider
the second-stage problem W ∗(d) = max{VN (x)|x ∈ F(d)}, which is an LP problem.
When quotas are two-sided paramodular, the second stage is an independent flow
problem, which can be solved in polynomial time. The first stage involves maximizing
a convex function W ∗(d) over the superomodular floor polytope F (the convexity
follows from the fact that the optimal value of an LP is convex in its parameters).
The problem is generally NP-hard because it involves finding the maximum over
the extreme points of the polytope, which can be exponentially many.14 However,
our characterization of all extreme points of F (Theorem 3) reduces the problem to
checking two classes of extreme points (the neighbors and the non-neighbors of the
zero vector), each of which has a more tractable structure.

2. The policy objectives. It is worth noting that the two-stage game where quotas
and allocations are determined sequentially reflects a situation where the society val-
ues different objectives (diversity vs. stability) in a lexicographical order, that is, the
first-stage objective has a higher priority over the second-stage objective. We have
shown that for the two-stage games, a quota policy can cause inefficient or unstable
outcomes and render the second-stage market ceasing to implement its own objec-
tive. The conflict between different policy makers raises the question of how different
policy makers can compromise and/or create a unified design for both the quotas
and the market mechanism (see Afacan et al. (2024) and Kumano and Kurino (2024)
for a discussion where both the quotas and matching outcomes are simultaneously
determined).

6 Conclusion

This paper studies the implementation of quota policies in assignment markets with
distributional and group influence constraints. We characterize the set of all imple-
mentable quota systems and provide a game-theoretic interpretation. We use this
implementability condition to analyze optimal quota policies. Our results can be
applied to assignment and matching markets where quotas are either fully or partially
controlled by a planner or determined through a bargaining process among different
groups of agents.

14 Also notice that the valuation of W∗(d) for each d is non-trivial for large instances (e.g., when d is
continuous).
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Several avenues exist for extending our model, including (1) incomplete informa-
tion; (2) side constraints; and (3) indivisibility. In this paper, we focus on complete
information and set aside incentive issues. While we consider only group influence
constraints, our model can incorporate additional side constraints. Finally, our model
assumes that goods are perfectly divisible, although in many assignment problems,
resources are indivisible. To characterize the feasible assignments with indivisibility,
we need to address the issue of decomposing a random assignment. It can be seen that
our Theorem 1 covers the cases with integral quotas but quota design with integral
quotas is more involved. We leave these problems for future research.
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Appendix: Missing proofs

Proof of Lemma 2 Suppose first that (c, d) is implementable, which means there exists
a feasible assignment x . In the independent flow problem P , we define ψ(i, j) =
x(i, j) for all (i, j) ∈ E . Clearly, ψ is a feasible independent flow. Conversely,
suppose that in problem P , there exists a feasible independent flow ψ . We can define
x(i, j) = ψ(i, j) for all (i, j) ∈ E . Then x is a feasible assignment for the original
problem. This completes the proof of the lemma. ��

To complete the proof of Theorem 1, wewill utilize the following lemma (Fujishige
2005, p.171).

Lemma 5 There exists a feasible independent flow satisfying (8)–(10) if and only if,
for each U ⊆ S+ ∪ S−, the following conditions hold:

ρ+(S+ ∩U ) − ρ−(S− ∩U ) ≤ c̄(�+(U )) − c(�−(U )), (20)

and for U = S+ ∪ S−,

0 ≤ c̄(�+(U )) − c(�−(U )). (21)

Proof of Lemma 5 We refer to Fujishige (2005) for a formal proof. Below we pro-
vide an intuitive argument. For a flow network (S+ ∪ S−, A), c̄, c, (S+, ρ+),

(S−, ρ−)), a subset of nodes U ⊆ S+ ∪ S− is called a cut. Note that for each cut
U , c̄(�+(U )) is the total capacity for the arcs leaving U , while c(�−(U )) is the total
demand for the arcs entering U . Also, ρ+(S+ ∩ U ) is the total demand for the arcs
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entering the nodes S+ ∩U that cut the source set, and ρ−(S− ∩U ) is the total capacity
for the arcs leaving the nodes S− ∩U that cut the sink set.15

From a version of Gale’s demand theorem, a feasible flow exists if and only if for
each cut U , the total demand c(�−(U )) + ρ+(S+ ∩ U ) is no greater than the total
capacity c̄(�+(U )) + ρ−(S− ∩U ). That is, there exists a feasible flow if and only if
(20) holds for all U ⊆ S+ ∪ S−. ��
Proof of Theorem 1 Combining Lemma 5 with Lemma 2, we conclude that (c, d) is
implementable if and only if, for all U ⊆ N ∪ O , (20) holds and, for U = N ∪ O ,
(21) holds.

Now, for every U = A ∪ B for some A ⊆ N and B ⊆ O , condition (20) can be
equivalently expressed as follows: for all A ⊆ N and B ⊆ O ,

d(A) − c(B) ≤ c̄(A × Bc) − c(Ac × B).

Finally, condition (21) is redundant in this context. This completes the proof of the
theorem. ��
Proof of Lemma 4 We refer to Ziegler (1995) for a formal proof. Below we provide a
proof sketch for this result. Fix any extreme point v ∈ P . Let H = {x : a�x = b} be
a cutting hyperplane such that a�v > b > a�v′ for all other extreme points v′ ∈ P .
Let Q = P ∩ H and let ext(Q) denote the extreme points of Q. It can be shown
that each v′ ∈ N (v) is in a one-to-one correspondence with some u ∈ ext(Q). On
the other hand, each ray emanating from v to any other point x ∈ P contains a point
of Q. Hence P ⊆ v + cone{u − v : u ∈ Q} ⊆ v + cone{u − v : u ∈ ext(Q)} =
v + cone{u − v : u ∈ N (v)}. ��
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