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• Individuals use social welfare evaluation to determine their migration behavior.
• The effects of different social welfare functions on cooperation are investigated.
• Social welfare functions have different relative efficiency for supporting cooperation under different parameter ranges.
• Inequality aversion plays an important role in the evolution of cooperation.
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a b s t r a c t

Individuals’ migration behavior may play a significant role in the evolution of cooperation.
In reality, individuals’ migration behavior may depend on their perceptions of social
welfare. To study the relationship between social-welfare-based migration and the
evolution of cooperation, we consider an evolutionary prisoner’s dilemma game (PDG)
in which an individual’s migration depends on social welfare but not on the individual’s
own payoff. By introducing three important social welfare functions (SWFs) that are
commonly studied in social science, we find that social-welfare-based migration can
promote cooperation under a wide range of parameter values. In addition, these three
SWFs have different effects on cooperation, especially through the different spatial patterns
formed by migration. Because the relative efficiency of the three SWFs will change if the
parameter values are changed, we cannot determine which SWF is optimal for supporting
cooperation. We also show that memory capacity, which is needed to evaluate individual
welfare, may affect cooperation levels in opposite directions under different SWFs. Our
work should be helpful for understanding the evolution of human cooperation and bridging
the chasm between studies of social preferences and studies of social cooperation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Cooperation is a ubiquitous phenomenon in both human society and animal world. It is a fascinating challenge in both
natural science and social science to understand how cooperation can emerge and be maintained in communities of selfish
individuals [1–6]. The evolutionary prisoner’s dilemma game (PDG) has been a widely used metaphor for understanding
cooperation between unrelated individuals. In a one-shot PDG, two players simultaneously choose between two strategies:
cooperation anddefection. Althoughmutual cooperation leads to the optimal outcome, defection is always a better choice for
any self-interested individual regardless of the partner’s choice. To understand howcooperation can be favored in nature and
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human society, five major mechanisms for supporting cooperation have been proposed, including kin selection [7], direct
reciprocity [8], indirect reciprocity [9], spatial selection [10] andmultilevel selection [11]. A central problem in investigations
of these mechanisms is how assortment among individuals can emerge in the process of evolution. If such assortment is at
work, cooperators can interact more frequently with other cooperators but not with defectors. As a remarkable example,
in the spatial PDG, cooperation can emerge and be maintained if cooperators can form clusters such that they have greater
payoffs than defectors due to the effect of spatial reciprocity.

In recent years, as an important factor in the spatial PDG, the migration of players under various conditions has been
introduced and investigated. For example, Vainstein et al. [12] introduced empty sites and random migration in a spatial
PDG and found that suchmovement can enhance cooperation under awide variety of conditions. Vainstein andArenzon [13]
extended such randommigration to Snowdrift games. In addition to randommigration, some formsof adaptive or contingent
migration also have been investigated. Aktipis proposed a walk-away strategy whereby individuals can avoid repeated
interactions with defectors [14]. Helbing et al. proposed a model of success-driven migration in which individuals prefer
moving to sites with high expected payoffs [15]. Liu et al. [16] added the factor of migration cost to the success-driven
model and found that migration cost does not suppress the emergence of cooperative behavior. Yang et al. [17] considered
a migration mechanism based on wealth, and Cong et al. [18] discussed reputation-based migration on the lattice. In
addition to migration on a square lattice, studies have also discussed the effect of migration in continuous two-dimensional
space where agents interacted and moved on a plane [19–22]. Various other forms of migration can enhance cooperation
under certain parameter ranges [23–28]. These investigations are meaningful not only because migration provides a new
approach to understanding the evolution of cooperation but also because migration itself is a key property of humans and
a fundamental problem in understanding population dynamics [29,30].

In most previous studies of contingent migration, the migration behavior of each individual is entirely based on the
individual’s own situation and not on the situations of other individuals. This means that individuals care about information
concerning other individuals only when this information can influence their own situation. However, in real society, people
often have social preferences [31,32,2,33], by which an individual may consider another individual’s payoff in addition to
its own. Chen et al. [34] and Wang et al. [35] considered the neighbor’s payoff and information during strategy updating
and found that these mechanisms can enhance cooperation under certain parameters. Bo [36] discussed the effect of
inequality aversion, which is a commonly used form of social preferences in the PDG on complex networks. Lu et al. [37]
also considered the effect of a version of social preferences on the evolution of cooperation in a self-questioning game.
Cushing [38] discussed the relationship between migration and social welfare under certain conditions using data from US
and found that social welfare has an effect on migration decisions. In this paper, we introduce social welfare evaluation as
a type of social preferences into individuals’ contingent migration decisions and investigate how different social welfare
evaluation modes affect migration patterns and cooperation. By social welfare, we mean individuals’ evaluation of the
situation of a given site in the lattice. In previous works about adaptive migration [15,26], a focal player need to know
the strategies of the players in the empty site’s neighborhood to decide whether to migrate. Unlike this information setting,
in our model the information needed for deciding the migration behavior is only the aggregated social welfare of the site
under consideration. Although the social welfare of a given site is derived from the past history of the payoffs of the players
in the neighborhood, the focal player does not need to know any information about the strategies or payoffs of other players.
We assume that individuals are ignorant of their ownwelfarewhen they decide to improve their environment, whichmeans
that this evaluation depends solely on the welfare of neighboring individuals and not on that of the focal individual who
chose to migrate. Because social welfare depends on all the welfare of individuals under consideration, we face the problem
of how to measure social welfare using some aggregation method [39–41]. To address this problem in our model, three
types of cardinal social welfare functions (SWFs) are considered: the Utilitarian SWF, Bernoulli–Nash SWF, and Rawlsian
SWF. According to these SWFs, each individual’s migration behavior will be contingent on the welfare of other individuals
and may affect the individual’s strategy updating. Interestingly, we find that the three SWFs have different effects on both
the migration patterns and the evolution of cooperation. This paper proceeds as follows: we first describe the model and
then present our findings in detail.

2. Model

In a one-shot PDG, each player independently chooses either cooperation or defection. R (‘‘reward’’) represents the payoff
for mutual cooperation, while P (‘‘punishment’’) represents the payoff for mutual defection. T (‘‘temptation’’) represents the
payoff for unilateral defection, which leads to the payoff S (‘‘sucker’’) for the cooperative individual. If the inequalities T >
R > P > S and2R > T+S both hold, the payoff structure satisfies the conditions of the classical PDG. For simplicity, although
there are some alternative scaling methods for the PDG [42], we adopt the re-scaled payoff matrix: T = b > 1, R = 1, and
P = S = 0 to allow us to study the game as a function of a single ‘‘temptation’’ parameter b. We consider an evolutionary
PDG on an L × L = N square lattice (L is fixed at 50 in our simulations) with periodic boundary conditions [10,43].
Each site on the lattice is either empty or occupied by an individual. We define the density of players ρ = n/N as a
parameter, where n is the number of all individuals. Initially, individuals are randomly located on the lattice, and their
strategies (cooperation or defection) are assigned with equivalent probability.

Individuals are updated asynchronously in a random sequential order at each time step. The randomly selected individual
engages in interactions with its 4 nearest neighbors (the von Neumann neighborhood) and compares its payoff with that
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of its neighbors. If the richest neighbor’s payoff is larger than that of the focal individual, the focal individual will copy the
strategy of this neighborwith probability 1−µ.With probabilityµ, the individual randomly resets its strategy. The resulting
strategy mutation can be seen as environmental noise or trial-and-error behavior by individuals. Before updating strategy,
the individual has a chance to decide whether to leave its current position by comparing the evaluated social welfare of
two sites. If possible, an empty site in the neighborhood will be chosen, and the social welfare of this site and the currently
occupied site will be evaluated and compared using an SWF.

We assume that the payoffs of individuals are memorized and accumulated to determine their individual welfare.
Specifically, the welfare of each individual i is the summation of its payoffs over the past h time steps. For each time step t:

wj =


t−h−1<k≤t−1

pj,k

where wj is the individual welfare of j and pj,k is the payoff of j at time step k (it is calculated when the individual is selected
to update).

As mentioned above, three different SWFs are considered in this study to determine the social welfare of compared sites.
Utilitarian (or Benthamian) SWF measures the sum of all individual welfare [44]:

WU,i =


j∈Mi

wj

whereW is the social welfare,wj is thewelfare of individual j, andMi is the set of all individuals in the neighborhood of site i.
Bernoulli–Nash SWF measures the product of all individual welfare [45]:

WB–N,i =


j∈Mi

wj.

Finally, Rawlsian SWF measures the minimum of all individual welfare [46]:

WR,i = min(wj), j ∈ Mi.

We can see that bothWB–N andWR have implications for equality, which means that these two SWFs are more sensitive
to a change in the welfare of a poorer individual than to the same change of a richer individual. Specifically, WR can be
regarded as an extreme case of an inequality-averse SWF because it only considers the poorest individual’s welfare. InWB–N ,
individuals have heterogeneous influences on social welfare, and hence it is commonly considered a combination ofWU and
WR. As an important social preference of humans, inequality aversion is a widely studied topic in social science [47,48]. By
introducing SWFs and social welfare comparisons in the analysis of migration behavior, we can investigate the role of social
welfare and inequality aversion in the evolution of cooperation.

After comparing two sites’ social welfare, if the new site’s social welfare is higher than that of the original site, the
individual will move to the new site; otherwise, the individual will remain at the original site. Following common practice,
if an individual is isolated, it will be forced to move to a randomly chosen neighboring site. In addition, we assume that
individuals have a chance (with probability γ ) to randomly move to a new site without considering the relative social
welfare of the sites. Both strategy mutation and random migration can be interpreted as noise in the evolutionary system
or uncertainty in decision making.

The simulation procedure of our model is summarized as follows:
Initialize
For each time step:

For each agent:
Migrates according to different SWFs (or randomly migrates).
Interacts with its Von Neumann neighbors and calculates its payoff.
Learns strategy according to the richest following rule.
Mutates.

End
End

3. Results

In what follows, as the most important quantity for characterizing the system, fc is defined as the fraction of cooperators
in the whole population. Computer simulations of our model show that social-welfare-based migration significantly affects
the emergence of cooperation in the system. Fig. 1 shows the dependence of the cooperation level on the population density
(ρ) for different SWFs under different noise conditions. The results of the degenerated model without migration (γ = 0)
or with pure random migration (γ = 0.01 or γ = 0.05) are also shown in Fig. 1 to allow us to compare our model with
those of previous studies. As can be seen in Fig. 1, the cooperation levels under the three SWFs are higher than under the no
migration case or random migration case for most population densities. In Fig. 1(b) and (c), we see that random migration
can change the effects of SWF-based migration. For all of the SWFs, the cooperation levels are enhanced when random
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(a) γ = 0. (b) γ = 0.01.

(c) γ = 0.05.

Fig. 1. The density of cooperators fc as a function of population density ρ for different SWFs under different migration noise levels. Other parameters:
b = 1.3, µ = 0.001, h = 5. The fraction of cooperators is obtained by averaging over 5000 time steps after 10000 time steps and each data point is
averaged over 40 different realizations.

migration is introduced. When γ = 0, fc cannot exceed a moderate level (near 55%) under both WB–N and WR. Only when
γ is higher (Fig. 1(b) and (c)), can high levels of cooperation be achieved under WB–N and WR. However, under WU , there is
always an optimal region of ρ for high levels of cooperation (fc > 60%) whenever random migration is in effect. This result
highlights the relatively high efficiency ofWU . For example, even when γ = 0, high levels of cooperation (fc > 60%) can be
achieved by usingWU , while there is no region ofρ for high cooperation levels underWB–N andWR. Moreover,we can see that
although high levels of cooperation can be achieved under all of the three SWFs when randommigration is introduced, the
region for high cooperation levels is larger under WU than under WB–N and WR. However, the highest level of cooperation
that the system can achieve is generated by WR but not WU (see Fig. 1(b) and (c)), though WU outperforms WR for most
population densities. This result indicates that we cannot determine which SWF is better for supporting cooperation if we
have no knowledge of the system environment. Fig. 1 also shows crucial differences among the results generated by the
different SWFs. First, although all of the SWFs have best regions for supporting cooperation, the positions of these regions
are different.WhileWU has a large best region, the best regions forWB–N andWU are at very high ρ. Furthermore, to compare
the three SWFs, we can roughly separate Fig. 1(c) into some parts, including the low population density part (ρ < 0.75) and
high population density part (ρ > 0.79). As we can see, the relative efficiency in supporting cooperation under different
SWFs will be reversed if ρ changes from a low to a high level. If ρ is small (<0.75), WU outperforms WB–N and WR, while
WR outperforms WB–N and WU if ρ is high (>0.79). We also see that although WB–N can be seen as a mix of WU and WR by
definition, the cooperation levels enhanced byWB–N are not always a mix of those enhanced byWU and WR.

The dependence of fc on b is shown in Fig. 2. We see that fc exhibits discontinuous transitions, which are also found
in other migration-based models. However, if population density is low (ρ = 0.4), WR never leads to high fc (cooperators
become extinct for all values of b). In fact, if ρ is small,WU outperformsWB–N andWR for all values of b. As population density
increases (ρ = 0.8), the result is changed significantly. While the cooperation levels generated by WU are only increased
slightly, the increase in ρ significantly changes the relative efficiency of the three SWFs. The increases in fc for both WB–N
andWR are more significant than forWU . AlthoughWU still outperformsWB–N andWR, the differences of cooperation levels
among the three SWFs are reduced significantly by the increase in ρ. In other words, the efficiency of WB–N and WR for
promoting cooperation will be similar to that ofWU under high population densities.

To better understand the effects of SWF-based migration on cooperation, we will examine the evolutionary dynamics
and spatial patterns in some typical simulation runs and investigate how SWF-based migration shapes the evolutionary
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(a) ρ = 0.4. (b) ρ = 0.8.

Fig. 2. The fraction of cooperators as a function of b for different SWFs under different population densities. Other parameters: µ = 0.001, γ = 0.05,
h = 5. The fraction of cooperators is obtained by averaging over 5000 time steps after 10000 time steps and each data point is averaged over 20 different
realizations.

(a) µ = 0, γ = 0. (b) µ = 0, γ = 0.01.

(c) µ = 0.01, γ = 0. (d) µ = 0.01, γ = 0.01.

Fig. 3. The fraction of cooperators as a function of time step t for different SWFs under different noise conditions. Other parameter: ρ = 0.7, b = 1.3,
h = 5.

characteristics of the system. First, the evolution of fc over time is plotted in Fig. 3. In most cases, WU quickly leads to
high cooperation levels after approximately 100 time steps, and high cooperation levels can be maintained over time. For
WB–N and WR, the evolutionary paths are more sensitive to the noise conditions in the system. We see that although the
relative efficiency of the SWFswill not be changedwhenµ and γ are changed, the changes in noise conditions can affect the
evolutionary paths for all of the three SWFs. For example, when there is no strategy noise, randommigration (γ = 0.01) can
significantly enhance the cooperation levels especially for WB–N and WR. In fact, only when random migration is in effect,
high levels of cooperation can be achieved by usingWB–N orWR. However, fc will gradually decline to moderate levels after
the emergence of cooperation, which is different from the evolutionary path underWU (see Fig. 3(b)). In Fig. 3(c) and (d), it



Y. Li et al. / Physica A 445 (2016) 48–56 53

Fig. 4. Typical snapshots of distributions of cooperators (in red) and defectors (in blue) at different time steps for different SWFs under low population
density (ρ = 0.4). Other parameters: b = 1.3, µ = 0.01, γ = 0.01, h = 5. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

is shown that strategy noise will not only reduce fc for most cases (except for WB–N and WR when γ = 0) but also reduce
the difference of evolutionary paths among the three SWFs. Moreover, we see that although cooperation can be enhanced
by randommigration, the results are less sensitive to migration noise if strategy noise is in effect.

Let us now focus on the spatial patterns generated by the migration mechanism from the typical snapshots shown in
Figs. 4 and 5. As a crucial characteristic of spatial games, cluster formation plays a significant role in the emergence of
cooperation. We can see that cooperation cannot emerge if no cluster can be formed, which is consistent with previous
studies. When population density is low, only WU can help the population to form clusters to allow cooperation to emerge
and be maintained. However, when strategy noise is in effect, cluster formation is not a sufficient condition for high
cooperation levels. For example, although some cooperative clusters can be formed in the population under WB–N , these
clusters soon disappear through strategymutations.When population density is high, we can observe some different cluster
patterns, which can explain why the cooperation levels are different under these SWFs. WU leads to large clusters which
can soon absorb almost all the individuals in the population. In the meanwhile, there are some large vacant spaces between
clusters where almost no individuals exist. However, whenWB–N orWR is at work, there are some isolated defectors or small
defective clusters in the population, indicating that the migration based on WB–N or WR cannot lead to an optimal cluster
structure which can effectively prevent mutant defectors from invading the formed cooperative clusters.

Next, we seek to explain the evolutionary dynamics and spatial patterns for different SWFs in greater detail. For all of
the three SWF, we found that there is a demonstrable enduring (END) period and an expanding (EXP) period [49–52] in the
evolution over time, and the evolutionary path is sensitive to the introduction of strategy noise and randommigration. The
cooperation level first rapidly decreases during the END period and then shows an increase during the EXP period. After
END period, many defectors and some small cooperative clusters are distributed in the population. The social welfare of
the cooperative neighborhood is higher than the defective one, and hence the cooperators have an opportunity to move
toward the cooperative neighborhood. Moreover, an agent situated on the boundary of a cooperative cluster will copy
the cooperation strategy during strategy updating. Therefore, the cooperative clusters can survive and expand until the
system reaches a steady state during the EXP period. The SWF-based migration increases the likelihood that cooperators
can escape from the neighboring defectors. However, the introduction of strategy noise (see Fig. 3(c) and (d)) causes many
cooperators to become defectors, thereby inhibiting the formation of cooperative clusters. The mutation also causes many
defectors to become cooperators, and hence the cooperation levels exhibit significant fluctuation. When there is no strategy
noise, although the time required for cooperation to reach a steady state cannot be shortened, the achievable levels of
cooperationwill be increased by the introduction of randommigration. The cooperators have an opportunity tomove toward
the cooperative neighborhood due to the migration, and the same is true for the defectors. However, the randommigration
can reduce the opportunity for the defectors to move toward the cooperative neighborhood, and thus the cooperation level
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Fig. 5. Typical snapshots of distributions of cooperators (in red) and defectors (in blue) at different time steps for different SWFs under high population
density (ρ = 0.7). Other parameters: b = 1.3, µ = 0.01, γ = 0.01, h = 5. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

can be increased quickly. Compared with the Bernoulli–Nash SWF and Rawisian SWF, the Utilitarian SWF is more efficient
in forming the cluster structure which is optimal for supporting cooperation. For the Bernoulli–Nash SWF, we can see that
when thewelfare of a neighboring agent is 0, the socialwelfare of the neighborhood is 0; thus, thewelfare of a poor agentwill
be emphasized in the calculation of social welfare. In this regard, the Bernoulli–Nash SWF is similar to the Rawisian SWF.
However, when the welfare of the agents is non-zero, the Bernoulli–Nash SWF magnifies the difference, which is similar
to the Utilitarian SWF. Therefore, the result can be understood as a combination of the results for the Utilitarian SWF and
Rawisian SWF (in Fig. 3).

We note that individuals use past history to determine their welfare. Thus, the system requires memory capacity, which
may have its own influence on the evolution of cooperation. To address this question, we also examine whether memory
capacity affects cooperation levels under typical conditions (Fig. 6). Surprisingly, high memory capacity has a detrimental
effect on cooperation underWU andWB–N when population density is high and there is no strategy noise. In this case, if h is
very small, the system can reach very high cooperation levels under both WU -based and WB–N -based migration. This result
is similar to some previous studies that suggested thatmemory can notably support cooperation but that excessivememory
capacity may also inhibit cooperation under certain circumstances [53–55]. The effect of memory capacity on cooperation
for WR is dependent on whether there is strategy noise. When strategy noise is in effect, higher memory capacity leads to
higher cooperation levels for WB–N . However, the levels of cooperation almost cannot be affected by the change of h for
WU (see Fig. 6(d)). If population density is low (Fig. 6(a) and Fig. 6(b)), while cooperation always fails to emerge under WR,
higher memory capacity leads to higher cooperation levels for both WU and WB–N . Especially for WB–N , as h is increased
to high levels, the system can reach moderate cooperation levels, while cooperation cannot emerge without high memory
capacity. Interestingly, Fig. 6(c) and (d) shows that the relative efficiency in supporting cooperation of the three SWFs will
be changed if the memory capacity is changed. For low memory capacity (h ≤ 2), WU outperforms WR and WB–N . As the
memory capacity is increased to higher levels,WR will benefit from this increase and can serve as ameans of supporting very
high levels of cooperation. This result shows again thatwe cannot determinewhich SWF is better for supporting cooperation
if the parameter values are unknown.

4. Conclusion

Experimental economics and behavioral science have shown that individuals have social preferences [56–58]. However,
a need persists for studies on the effects of these preferences on the evolution of cooperation, especially in the context of the
PDG. As an important type of social preference, social welfare evaluation plays a significant role in determining patterns of
individual behavior. Therefore it is worth investigating whether introducing social welfare evaluation affects cooperation in
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(a) ρ = 0.4, µ = 0. (b) ρ = 0.4, µ = 0.01.

(c) ρ = 0.8, µ = 0. (d) ρ = 0.8, µ = 0.01.

Fig. 6. The fraction of cooperators as a function of h for different SWFs under different strategy mutation rates. Other parameters: b = 1.3, γ = 0.01. The
fraction of cooperators is obtained by averaging over 5000 time steps after 10000 time steps and each data point is averaged over 30 different realizations.

an evolutionary PDG. In this paper, we have introduced social welfare evaluation into the migration behavior of individuals
and examined the different effects of three important SWFs that are widely studied in social science. By changing the
interaction structure over time, different SWFs shape migration patterns and support the emergence and maintenance of
cooperation in different ways.

In conclusion, we have studied the effects of social-welfare-based migration on the evolution of cooperation in a spatial
PDG. Computer simulations of our model show that each SWF has a parameter range that supports the emergence and
maintenance of cooperation. A key finding of this study is that the relative efficiency of an SWF for supporting cooperation
is sensitive to the parameter values. For example,WR will outperform the other two SWFs under high population densities,
while WU is optimal if there is no migration noise. The snapshots provide a plausible account of the different cooperation
levels for different SWFs.WU can outperformWB–N andWR under a wide variety of conditions because the former SWF can
help the population to form a robust cluster structure that can resist the invasion of defectors, especially in the presence
of strategy noise. Because inequality aversion is an important property of the three discussed SWFs, this finding suggests
that inequality aversion may play a significant role in the evolution of cooperation. Therefore, our work may be helpful in
understanding the relationship between social preferences and cooperation in social systems.
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