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a b s t r a c t

We extend a quantitative Aumann’s agreement theorem in Arieli et al. (2021) from binary states to
arbitrary finite states and provide a complete characterization of feasible joint posteriors beliefs when
beliefs supports are binary. Using a network flow approach, we show that the martingale condition
and the cut condition for a feasible flow are necessary and sufficient for feasible joint posterior beliefs.
For symmetric supports, we show that the cut condition implies that the posteriors beliefs must be
positively dependent. We also relate the cut condition to various characterization conditions in the
literature.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Aumann (1976) introduced a formal definition of common
nowledge and used it to prove that two agents with the same
riors about the world but different information cannot agree to
isagree: If their posteriors for an event A are common knowl-
dge, then these posteriors are equal. Aumann’s Agreement Theo-
em effectively restricts the posterior beliefs of agents. Arieli et al.
2021) provided a linear characterization of feasible posterior
eliefs and showed that these linear inequalities lead to a quan-
itative Aumann’s Agreement Theorem. For arbitrary finite state
pace, a similar linear characterization of feasible joint posteriors
s in Arieli et al. (2021) is a tough question. In this paper, we
tudy this feasible joint posteriors problem with a finite state
pace for one of the simplest non-trivial cases, i.e., binary belief
upport for each agent. To obtain a characterization, we study
his problem by a network flow approach. We show that together
ith the martingale condition, the cut condition for the existence
f a feasible flow is necessary and sufficient for the feasibility.
Some recent literature has provided various characterizations

f feasibility with many states. For many-agent problems, Morris
2020) provided a very general no-trade characterization of feasi-
le joint posteriors by zero-value trades (with some measurability
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assumption). It can be shown that the cut condition corresponds
to a particular choice of zero-value trades and hence is a lower-
dimensional reduction of Morris’s condition. For two-agent prob-
lems, Ziegler (2020) derived a class of necessary conditions for
feasibility. His condition provides bounds on how dependent the
beliefs can be across the agents in the spirit of Fréchet–Hoeffding
bounds, by further tightening these classic bounds. Since these
bounds concern cumulative distribution functions defined on be-
liefs, the spaces of beliefs need to be totally ordered. The cut
condition, on the other hand, applies to the arbitrary beliefs
including not totally ordered ones. Hence Ziegler’s condition is
implied by the cut condition and the martingale condition. For
many agents, Levy et al. (2021) provided a class of necessary
conditions including the martingale condition and a condition
called the marginal expectation condition for any pair of agents.
It can be shown that the equal marginal expectation condition
is implied by a collection of agent-pairwise cut conditions and
martingale conditions. Different from the first-order belief-based
approach, for information design problems with multiple agents
and binary signals, Arieli and Babichenko (2019), Bergemann and
Morris (2019), and Taneva (2019) provided an alternative ap-
proach that relates information design problems to Bayes Corre-
lated Equilibrium. Mathevet et al. (2020) provided an alternative
characterization of feasibility implicitly by considering the entire
belief hierarchy and showed that feasibility is equivalent to the
consistency of the hierarchy.

2. Model

We consider two agents, 1 and 2, and a finite state space Ω =

ω ,ω , . . . , ω }, m ≥ 1. The prior probability of state ω ∈ Ω
0 1 m
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s denoted by pω0 . The agents have common prior p0 regarding
he states. An information structure I = (S, p) consists of a finite
ignal space S = S1 × S2 and a distribution p ∈ ∆(Ω × S), with
he marginal of p on Ω equal to p0. Let (ω, s1, s2) be a realization.
hen, each agent i observes the signal si ∈ Si. Let qi(si) ∈ ∆(Ω)

denote agent i’s posterior belief aboutΩ after receiving the signal
si. The posterior belief attributed to event A ⊂ Ω is given by

qAi (si) = p(A|si). (1)

Denoted by pS the marginal of p on the signal space S, and
y piS the marginal of p on the signal space Si. We denote by ψI
he joint distribution of posterior beliefs induced by I . That is, for
ach (f1, f2) ∈ ∆(Ω) ×∆(Ω), define

I (f1, f2) = p(q1 = f1, q2 = f2). (2)

For each agent i, let Fi ⊂ ∆(Ω) be a set of posterior beliefs.
enote F = F1 × F2. We say F is binary if for each agent i,
i contains two elements. For a probability measure ψ ∈ ∆(F )
nd for agent i, we denote by ψi the marginal distribution of the
osterior of agent i. We can start with an arbitrary (F , ψ) and ask
hether it can be generated by some information structure.

efinition 1. ψ ∈ ∆(F ) is p0-feasible if there exists some
nformation structure I with prior p0 such that ψ = ψI .

. Aumann’s theorem revisit

We first present the following quantitative Aumann’s Agree-
ent Theorem with finitely many states, which follows from
heorem 1 in Arieli et al. (2021) for binary states by applying
dditivity of probabilities.

heorem 1. Let (S, p) be an information structure. Let A ⊂ Ω be
n event. (a) The agents’ average posterior beliefs are approximately
qual when they are approximately common knowledge: for all E1 ⊆

1, E2 ⊆ S2,

− pS(Ec
1 × E2) ≤ E(qA11s1∈E1 ) − E(qA21s2∈E2 ) ≤ pS(E1 × Ec

2). (3)

(b) (Aumann’s Agreement Theorem) For each i, let Ei be the set of
signals that i has posterior ri for A. If qA1 = r1 and qA2 = r2 is common
knowledge, then r1 = r2.

Proof (b). is similar to Arieli et al. (2021) and we show (a)
holds. Fix A ⊂ Ω and consider a new binary state space Ω̃ =

{ω̃0, ω̃1} where for each probability measure p0 in the original
problem, define a corresponding one for the new problem by
p̃ω̃1
0 =

∑
ω∈A p

ω
0 . Then for the new problem Theorem 1 of Arieli

et al. (2021) applies. ■

4. Characterization

Theorem 1 immediately implies the following necessary con-
dition for feasibility.

Corollary 1. Let ψ ∈ ∆(F ) be a joint distribution of posterior beliefs.
If ψ is p0-feasible, then

−ψ(C c
1 ×C2) ≤

∑
f1∈C1

(
∑
ω∈A

f ω1 )ψ1(f1)−
∑
f2∈C2

(
∑
ω∈A

f ω2 )ψ2(f2) ≤ ψ(C1 ×C c
2 ),

(4)

for all A ⊂ Ω and all C1 ⊆ F1, C2 ⊆ F2.

Proof. Suppose ψ is p0-feasible with information structure (S, p),
then for each fi ∈ Fi, there exists si ∈ Si such that qi(si) = fi. Then
for each Ci ⊆ Fi, define Ei = {si ∈ Si : qi(si) ∈ Ci} in Theorem 1,
we obtain condition (4). ■
2

For binary belief supports, we obtain that condition (4) is
necessary and sufficient for feasibility.1

Theorem 2. Let ψ ∈ ∆(F ) be a joint distribution of posterior beliefs
and F is binary. ψ is p0-feasible for some p0 if and only if (4) holds.

4.1. Proof of Theorem 2

Corollary 1 has shown that condition (4) is necessary for
feasibility. We next show that for binary belief supports, this
condition is also sufficient for feasibility. In the following of the
section, for any ψ ∈ ∆(F ) we define hi : Ω × Fi → R by

hωi (fi) := f ωi ψi(fi), for all i = 1, 2.

First note that condition (4) can be decomposed into the
following two conditions:

(1) The martingale condition (Blackwell, 1951; Aumann and
Maschler, 1995; Kamenica and Gentzkow, 2011): for all ω ∈ Ω ,
i = 1, 2,∑
fi∈Fi

hωi (fi) = pω0 . (5)

(2)The cut condition: for all A ⊆ Ω , C1 ⊆ F1, C2 ⊆ F2,∑
ω∈A

[

∑
f1∈C1

hω1 (f1) −

∑
f2∈C2

hω2 (f2)] ≤ ψ(C1 × C c
2 ). (6)

As we will show below, condition (6) is associated with the
cut sets in a network flow problem and we call this condition the
cut condition.

To obtain the characterization, we show that the feasible joint
posteriors problem can be transformed into a network flow prob-
lem and a maximum-flow minimum-cut theorem can be invoked
to this problem. Below we assume agents’ belief supports are
binary, i.e., Fi = {fi1, fi2}.

Lemma 1. ψ ∈ ∆(F ) is p0-feasible if and only if ψ satisfies
the martingale condition (5) and the following linear system has a
feasible solution (Yω(f2))ω∈Ω,f2∈F2 :∑
f2∈F2

Yω(f2) = hω1 (f11), for all ω ∈ Ω, (7)

∑
ω∈Ω

Yω(f2) = ψ(f11, f2), for all f2 ∈ F2, (8)

0 ≤ Yω(f2) ≤ hω2 (f2), for all ω ∈ Ω, f2 ∈ F2. (9)

Proof. Suppose ψ is p0-feasible and let (S, p) be one correspond-
ing information structure. For all ω, f1, f2, define p(ω, f1, f2) =

p(ω, q1 = f1, q2 = f2). Then from p0-feasibility of ψ ,

p(ω, f11, f2) + p(ω, f12, f2) = hω2 (f2), (10)

for all ω ∈ Ω, f2 ∈ F2, it implies that we can take p(ω, f12, f2) as a
slack variable. Define Yω(f2) = p(ω, f11, f2) for all ω ∈ Ω, f2 ∈ F2.
Then (Yω(f2))ω∈Ω,f2∈F2 is a feasible solution to (7)–(9). Conversely,
suppose (Yω(f2))ω∈Ω,f2∈F2 is a feasible solution to (7)–(9). Define
Si = Fi and p(ω, f11, f2) = Yω(f2) and p(ω, f12, f2) = hω2 (f2)−Yω(f2).
Define pω0 =

∑
f2∈F2

Yω(f2). Then (S, p) is the required information
structure. Hence ψ is p0-feasible. ■

1 A direct revelation argument implies that for any information structure
ω, s1, s2), there is an equivalent structure (ω, q1, q2) in which agent i observes
the posterior belief induced by s. So for binary belief supports, it is without loss
to consider binary signal spaces. We will use binary belief supports and binary
signals interchangeably.
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We next apply a network flow analysis to the linear system
(7)–(9). Define a network flow problem (V , E, c) as follows: the
ode set V contains a source v0, a bipartite node set Ω ∪ F2, and
sink v1, and the arc set E consists of arcs from v0 to each ω,

from each ω to each f2, and from each f2 to v1. Define the capacity
function c : E → R by c(v0, ω) = hω1 (f11), c(ω, f2) = hω2 (f2), and
(f2, v1) = ψ(f11, f2). For any v ∈ V , denote δin(v) as the set of
he arcs entering v and δout (v) as the set of arcs leaving v. We
ay x : E → R is a feasible flow if x satisfies the following two
onditions:
(1) flow conservation constraints at non-terminal nodes:∑

a∈δout (v)

x(a) =

∑
a∈δin(v)

x(a), for all v /∈ {v0, v1}, (11)

(2) capacity constraints on arcs:

≤ x(a) ≤ c(a), for all a ∈ E. (12)

Denote val(x) the value of flow x by
∑

a∈δout (v0)
x(a). A set G

f arcs is a cut if G = δout (U) for some subset U ⊂ V with
0 ∈ U and v1 /∈ U . Denote cap(δout (U)) the total capacity from
he arcs δout (U). A maximum flow problem is to find a feasible
low with the maximum value. The following lemma establishes
n equivalence between the joint posterior feasibility problem
nd the maximum flow problem.

emma 2. The linear system (7)–(9) has a feasible solution if and
nly if the network flow problem (V , E, c) has a maximum flow x∗

atisfying

al(x∗) =

∑
ω∈Ω

hω1 (f11) =

∑
f2∈F2

ψ(f11, f2). (13)

roof. Suppose (7)–(9) has a feasible solution Y . Then Y satisfies
11)–(12) and is a feasible flow. Moreover, Y is a maximum flow
s val(x) ≤

∑
ω∈Ω hω1 (f11) for all feasible flows x. Conversely,

uppose (V , E, c) has a maximum flow x∗ satisfying (13). Then
ll capacity constraints at arcs (v0, ω) and (f2, v1) must hold with
quality. x∗ is a feasible solution to (7)–(9). ■

From Lemmas 1 and 2, we have transformed the original
roblem into the maximum flow problem (V , E, c). By a max-flow
in-cut theorem (e.g. Schrijver, 1986), for every cut U ⊂ V ,

max
x
val(x) ≤ cap(δout (U)). (14)

ombine (13) and (14), we get∑
ω∈Ω

hω1 (f11) =

∑
f2∈F2

ψ(f11, f2) ≤

∑
ω/∈U

hω1 (f11)

+

∑
ω∈U,f2 /∈U

hω2 (f2) +

∑
f2∈U

ψ(f11, f2). (15)

otice that any U is of the form {v0} ∪ A ∪ C2 for some A ⊆ Ω ,
2 ⊆ F2. There are two cases either ω0 /∈ A or ω0 ∈ A. In each case,
ome algebraic manipulation shows that (15) reduces to the cut
ondition (6). This completes the proof.

. The cut condition and correlation

In this section, we show that the characterization condition
n Theorem 2 imposes strong restrictions on the bounds and
ossible forms of dependence structures. Roughly, the cut con-
ition requires that the posterior beliefs are not too negatively
ependent.
Consider a class of joint distributions of beliefs with arbi-

rary finite symmetric belief supports. With symmetric supports,
3

e introduce the following intuitive notion for positive depen-
ence. It requires that the joint distribution of beliefs puts more
‘weights’’ on the diagonal points than the average of off-diagonal
oints, exhibiting a form of positive dependence.

efinition 2. Suppose F is symmetric (F1 = F2) and let ψ ∈ ∆(F ).
We say ψ is average affiliated, if for all f ∈ F1,

ψ(f , f ) ≥
1

|F1| − 1
max{

∑
f ′ ̸=f

ψ(f , f ′),
∑
f ′ ̸=f

ψ(f ′, f )}. (16)

Below we discuss a class of problems with m ≥ 2. We say a
oint distribution ψ is a star, if F1 = F2 = {f (1), . . . , f (m)} where
or each f (j), j = 1, . . . ,m, we have

ω(j) =

{
δ if ω = ω0,

1 − δ if ω = ωj,

0 if ω ̸= ω0, ωj.

rom the martingale condition, we have δ = pω0
0 . By construction,

here is a one-to-one correspondence between each f (j) ∈ F1 and
j ∈ Ω , i.e., the agent knows that the state is either ωj or ω0. The
upport assumption further requires that each agent’s posterior
or state ω0 remains the prior and the posterior for any other state
hifts all mass to some ωj. When δ approaches zero, the signals
eveal almost perfect information.

We now apply the cut condition in Theorem 2 to a star ψ .
onsider the following class of testing sets (C1, C2) = (C, C c)

for some C ⊆ Ω (note that we can denote F1 by Ω). The cut
inequalities require that for all C ⊆ Ω and A ⊆ Ω , we have

−ψ(C c
×C c) ≤ (1−δ)[ψ((C∩A)×Ω)−ψ(Ω×(C c

∩A))] ≤ ψ(C×C).
(17)

t implies that the tightest upper bound is obtained at A = C and
he lower bound is obtained at A = C c , and the condition can be
implified as

(C × C) ≥
1 − δ

δ
max{ψ(C × C c), ψ(C c

× C)}. (18)

Intuitively, ψ(C × C c) denotes the probability that two agents
ave opposite beliefs on the possible states. ψ(C×C) denotes the
robability that agents’ beliefs are aligned. The cut inequalities
hen say that agents’ beliefs cannot be too opposite. Moreover,
ake C = {j}, j = 1, . . . ,m, we obtain that for pω0

0 ≤ 1− 1/m, the
ut inequalities imply average affiliation.

roposition 1. Suppose pω0
0 ≤ 1 − 1/m and ψ ∈ ∆(F ) is a star. If

is p0-feasible, then ψ is average affiliated.
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