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Abstract

We propose an approach to solving and analyzing linear rational expectations mod-

els with general information frictions. Our approach is built upon policy function

iterations in the frequency domain. We develop the theoretical framework of this

approach using rational approximation, analytic continuation, and discrete Fourier

transform. Conditional expectations, which are difficult to evaluate in the time do-

main, can be calculated efficiently in the frequency domain. We provide the numerical

implementation accompanied by a flexible object-oriented toolbox. We demonstrate

the efficiency and accuracy of our method by studying four models in macroeco-

nomics and finance that feature asymmetric information sets, endogenous signals,

and higher-order expectations.
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1 Introduction

Incorporating information frictions in dynamic general equilibrium models has produced fruitful

results that shed light on a wide range of questions in macroeconomics and finance [Angeletos

and Lian (2016)]. Despite the progress made so far, solving dynamic models with endogenous

information frictions remains a daunting task. To address this challenge, this article proposes a

frequency-domain method of solving and characterizing macroeconomic and finance models with

endogenous information frictions.

The presence of endogenous information is inevitable in most macroeconomic models with

rational expectations. Households and firms form expectations conditional on endogenous eco-

nomic conditions, whose decisions, in turn, impact the state of the economy. In models of the

financial market, learning from endogenous asset prices is also an indispensable ingredient as

these prices aggregate information. Another notion of information endogeneity emerges in dis-

ciplined bounded rationality models, such as rational inattention models, where the choice of

information structure is endogenous.

While endogenous information constitutes an essential ingredient of the general equilibrium

(GE) feedback mechanism between expectations and economic outcomes that produces propaga-

tion, persistence, and volatility [e.g., Angeletos and Lian (2018), Chahrour and Gaballo (2019)],

it also complicates the model solution significantly. In models with endogenous information, an

information fixed point exists between agents’ perceived law of motion of the economy (includ-

ing endogenous variables such as prices) and the actual law of motion, based on agents’ actions

and conditional expectations using the endogenous signals. The underlying GE effect, operating

through the lens of endogenous learning, creates equilibria that in general admit no finite-state

representation.1

The complication is exacerbated in the environment of information heterogeneity. When an

agent’s view about economic fundamentals differs from that of other agents, the “forecasting the

forecasts of others” problem gives rise to the role of higher-order expectations (HOEs) in shaping

model dynamics. The recursion of HOEs implies that agents need to form an infinite order of

expectations about what others believe when making decisions. When agents are not learning

from endogenous variables, Huo and Takayama (2018) show that HOEs are tractable, and the

model equilibrium permits a finite-state representation in the time domain. Therefore, the great-

est challenge to solving and analyzing the model arises when information is both endogenous and

heterogeneous.

The key contribution of this paper is to develop an analytic policy function iteration (APFI)

1Makarov and Rytchkov (2012) first illustrate this point in an asset pricing model. Models with endogenous
information may admit finite-state representation when the signal structure is “square” with equal numbers of
signals and innovations. The finite-state representation is defined in the time series sense that the equilibrium
variables follow a finite-order VARMA process.
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method to address the challenge directly. We use a simple asset pricing model of Singleton (1987)

to demonstrate the basic idea of our method (Section 2). We circumvent the issue with infinite-

state representation in the time domain by treating the frequency domain as the appropriate

state space.2 Our idea is straightforward and analogous to the classical method used to solve

dynamic programming problems in the time domain. However, the mathematical foundation

and numerical implementation of our approach differ substantially from standard policy function

iterations.

We first provide three theorems that establish the theoretical foundation for the APFI method

(Section 3). The first theorem characterizes the basis for functional approximations in the fre-

quency domain. We use the set of rational functions to approximate the true equilibrium solution.

The functional form of the solution within each iteration is known (as rational analytic func-

tions). We show that any linear stationary equilibrium can be approximated arbitrarily well by a

VARMApp, qq process. The second theorem uses the theory of analytic continuation to construct

the appropriate state-space grid in the real unit interval p´1, 1q. We apply the theory of the con-

vergence of analytic functions to establish a convergence criterion for our algorithm. The third

theorem constructs a fast and efficient method of computing conditional expectations in the fre-

quency domain, which are typically hard to evaluate in the time domain. Specifically, we apply

the discrete Fourier transform to compute conditional expectations under different information

sets.

We then establish the baseline APFI algorithm along with numerical details that facilitate the

computation (Section 4). Admittedly, frequency-domain methods have not been widely adopted

by macroeconomists. To minimize the user’s fixed cost, we provide a handy MATLAB-based,

object-oriented toolbox called “z-Tran” that implements these procedures, serving as the paper’s

second contribution.3 This toolbox encapsulates all required frequency-domain methods via a

user-friendly interface. An applied user can quickly input the model’s linearized equilibrium con-

ditions into the canonical form of the baseline APFI algorithm and test the model implications.

We also allow experienced users to call each routine in the toolbox independently and modify

the baseline APFI algorithm whenever appropriate.

The existing frequency-domain method is powerful in deriving analytical characterization of

the equilibrium [e.g., Whiteman (1983), Tan and Walker (2015), and Huo and Takayama (2018)].

However, it also faces limitations due to the cumbersome symbolic algebra involved in the pro-

cedure. The APFI framework circumvents these limitations. With numerical efficiency and

stability, it extends the applicability of existing methods from characterizing small, illustrative

2The frequency-domain approach solves and analyzes model equilibrium in the space of analytic functions.
Early contributions include Hansen and Sargent (1980), Whiteman (1983, 1985), and Taub (1989), and more
recent developments include Kasa (2000), Kasa, Walker and Whiteman (2014), Acharya (2014), Tan and Walker
(2015), Huo and Takayama (2018), Rondina and Walker (2018), Miao, Wu and Young (2021b), and Al-Sadoon
(2018, 2020), among others.

3The toolbox is publicly available, free of charge, at https://github.com/econdojo/ztran.
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models to solving large, quantitative dynamic stochastic general equilibrium (DSGE) models with

general information frictions. The APFI framework is also flexible in the choice of information

structure, as our canonical representation nests nearly all examples considered in the literature,

including full information, imperfect (exogenous or endogenous) information, and heterogeneous

(dispersed or hierarchical) information.

In related research, Huo and Takayama (2018) characterize the analytical solution to incomplete-

information models by applying the state-space method to obtain the Wold fundamental represen-

tation in the frequency domain. While Huo and Takayama (2018) focus primarily on exogenous

information, our APFI approach is designed mainly for models with endogenous information

where the signal process per se does not admit an exact VARMA representation. It is also suit-

able for models whose explicit solutions from algebraic derivation become infeasible.4 In this

sense, our APFI framework complements the approach of Huo and Takayama (2018) and the

two methods agree when information is exogenous.

Another influential work by Nimark (2017) develops a state-space method of solving dynamic

models of dispersed information. His method truncates the (potentially) infinite-dimensional

state vector of HOEs to a finite order and is widely adopted in the literature. One limitation of

the truncation approach arises when agents in the model face asymmetric information frictions.

That is, different groups of agents face ex-ante distinct information structures. In this case, the

truncation strategy no longer works due to the explosion of cross-expectations among groups.

Another limitation of the truncation approach emerges when the time series structure of the

primitive model extends beyond the simple ARp1q recursion so that pinning down a suitable state

space becomes tricky. In contrast, the APFI framework is not constrained by these limitations

and works well for models with general information frictions.5

In summary, the APFI framework is particularly useful for solving dynamic models with en-

dogenous signals and substantial information heterogeneity. We demonstrate the reliability and

flexibility of our method by applying it to study three macroeconomic models (Section 5). The

first example solves a prototypical New Keynesian DSGE model similar to Melosi (2017). We

highlight the sensitivity of model solutions to incomplete-information firms’ endogenous signals.

We then augment this DSGE model with a fiscal sector that features primary surplus and gov-

4In the extension of the paper, Huo and Takayama (2018) also propose a numerical algorithm to solve the
endogenous information case. Unlike our method that iterates on the policy function values, their method makes
a conjecture of the parametric VARMA form and iterates on the VARMA coefficients, which requires lengthy
algebra in evaluating the expectations and a non-trivial procedure for updating the VARMA orders.

5Our paper is also related to several recent papers that attempt to bridge the gap between incomplete-
information models and their full-information counterparts by constructing an isomorphism between the two.
The key ingredient in this approach is to introduce certain forms of distortions or wedges so that the incomplete-
information economies are equivalent to the modified complete-information economies. Examples in this line of
research include Chahrour and Ulbricht (2018) and Angeletos and Huo (2021). While these papers concentrate
on the theoretical insight from the indirect mapping and its qualitative implications, our paper adopts a direct
computational approach emphasizing the information endogeneity.
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ernment debt and introduce incomplete-information households. We showcase four distinct fiscal

effects of the primary surplus shock by allowing firms and households to observe differential,

non-nested, and endogenous information. Our results provide new insight into how fiscal policy

affects inflation.

The second example considers a HANK-type model of Angeletos and Huo (2021) with en-

dogenous wealth distribution and incomplete information. We modify their original model by

allowing different groups of households to be endowed with asymmetric, endogenous information

sets. We examine how such asymmetric information frictions interact with the group heterogene-

ity and shape the model dynamics. To the best of our knowledge, the extension of introducing

distinct, endogenous information frictions to different sectors (groups) of the economy is novel,

which highlights the flexibility of our methodology.

Our baseline APFI algorithm requires an invertibility condition on the non-expectational block

of the model system. Moreover, it cannot handle models with random walk dynamics. In the

last application, we consider such a dispersed-information RBC model from Graham and Wright

(2010). The model features non-stationarity and multiple equilibria, and it does not satisfy the

invertibility condition. To circumvent the limitations of the baseline APFI algorithm, we design

three extended APFI algorithms to solve this model. We also conduct a numerical experiment

that compares the performance of our algorithms with the time-domain truncation method,

which demonstrates the comparative advantages of the APFI framework in terms of accuracy,

flexibility, and initial conjecture choice.

2 A Simple Model

We use a simple asset pricing model to illustrate the basic idea of our methodology. We also

discuss its advantages vis-à-vis other popular frequency-domain and time-domain approaches.

2.1 Environment

The model environment follows Singleton (1987). There are two assets in the market: a stock

with stochastic dividend payment dt and a risk-free one-period bond with constant gross return

R ą 1. The stock is in zero fixed supply. A continuum of short-lived traders indexed by i P r0, 1s

allocate their wealth optimally between these two assets to maximize their constant absolute risk

aversion utilities. It is well-known that the equilibrium condition for the (cum-dividend) stock

price pt is given by

pt “ βEtpt`1 ` dt (2.1)
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where Etp¨q “
ş1

0
Ei,tp¨qdi is the cross-sectional average expectation operator at time t and β “ 1{R

defines the constant discount factor.

The market fundamental or the dividend is unobservable to traders when they trade. Suppose

the exogenous dividend dt is a covariance-stationary process driven by a persistent ARp1q shock

and a transitory shock

dt “ et ` ηt “
1

1´ ρL
εt ` ηt, εt „ Np0, σ2

εq, ηt „ Np0, σ2
ηq (2.2)

where L is the lag operator, Lk εt “ εt´k, and 0 ă ρ ă 1. During each period every trader

receives a private signal si,t on the persistent fundamental innovation εt

si,t “ εt ` νi,t, νi,t „ Np0, σ2
νq (2.3)

The noise component νi,t is i.i.d. across traders i and over time t. These idiosyncratic noises are

dispersed in the sense that
ż 1

0

νi,tdi ” 0 (2.4)

The innovations pεt, νi,t, ηtq are uncorrelated at all leads and lags.

Trader i’s information set is defined as Ωi,t “ sti _ pt, where sti ” tsi,t, si,t´1, . . .u, p
t ”

tpt, pt´1, . . .u, and _ denotes the smallest closed subspace generated by the history of exoge-

nous signals and endogenous prices. The conditional expectation operator Ei,tp¨q refers to trader

i’s individual expectation, i.e., Ei,tp¨q “ Er¨|Ωi,ts. We restrict our attention to the symmetric

equilibrium in which all traders behave according to the same linear decision rule.

2.2 Frequency-Domain Preliminaries

We characterize the linear covariance-stationary equilibrium price using polynomials in the lag

operator L

pt “
8
ÿ

k“0

Ak Lk εt `
8
ÿ

k“0

Bk Lk ηt ” ApLqεt `BpLqηt, (2.5)

where tAku
8
k“0 and tBku

8
k“0 are square-summable sequences of coefficients, i.e.,

ř8

k“0 |Ak|
2 ă 8

and
ř8

k“0 |Bk|
2 ă 8. The conjecture is valid as any causal covariance-stationary equilibrium

process has a (one-sided) infinite-order moving average representation, i.e., an MAp8q represen-

tation. The economic interpretation of tAku
8
k“0 and tBku

8
k“0 is straightforward—they measure

the k-period-ahead impulse response of the asset price to a one unit increase in the structural

innovations, which must converge to zero over time by stationarity.

Solving for the infinite sequences of impulse responses tAku
8
k“0 and tBku

8
k“0 in the time do-
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main is a daunting task. Instead, we adopt the frequency-domain approach. The basic idea of

frequency-domain methods is to transform the problem by replacing the lag operator L with a

complex-valued variable z. We then solve an equivalent yet simpler problem of searching for the

analytic functions Apzq and Bpzq in the complex plane

Apzq “
8
ÿ

k“0

Akz
k, Bpzq “

8
ÿ

k“0

Bkz
k, z P D (2.6)

where D denotes the open unit disk tz P C : |z| ă 1u and C denotes the complex plane. The

functions Apzq and Bpzq are called the z-transforms of tAku
8
k“0 and tBku

8
k“0, and they encode

the whole impulse response sequences. These functions completely summarize the covariogram

and hence the second moment properties of tptu via the covariance-generating function Sppzq “
ř8

k“´8 Epptpt´kqzk “ σ2
εApzqA pz

´1q ` σ2
ηBpzqB pz

´1q.

Formally, the equivalence between the two representations is established by the Riesz-Fischer

theorem, which states that there exists an isometrically isomorphic mapping from the space of

one-sided, square-summable sequences to the Hardy space of analytic functions H2pDq.6 There-

fore, solving for the sequences tAku
8
k“0 and tBku

8
k“0 in (2.5) amounts to solving for the functions

Apzq and Bpzq in H2pDq. We refer interested readers to Online Appendix S1 for more technical

details.

In practice, the MAp8q process (2.5) can be approximated arbitrarily well by an autoregressive

moving-average process of finite orders p and q, i.e., ARMApp, qq. For example, if we shut down

the transitory shock ηt, the equilibrium asset price can be approximated as DpLqpt “ NpLqεt,

whereDpLq ” 1´
řp
k“1 Dk Lk andNpLq ”

řq
k“0 Nk Lk. The polynomialsDpLq andNpLq share no

common factors. When the approximation is exact, we have the relation ApLq “ DpLq´1NpLq and

the equilibrium admits a finite-order ARMA representation. In the frequency domain, ARMA

processes are identified as rational functions (i.e., ratios of two polynomial functions).

We offer two geometric interpretations of the connection between the frequency domain’s

analytic functions and the time domain’s impulse response functions. First, suppose the analytic

function under consideration is rational. In this case, its geometric properties are completely

summarized by the order and location of its poles (roots of the denominator) and zeros (roots of

the numerator). The pole-zero plot, which is used extensively in the signal processing literature

[e.g., Oppenheim, Willsky and Young (1983)], determines the behavior of impulse responses in

the time domain. For example, the causal-stationarity of the impulse responses corresponds

to poles located outside the unit circle. Given causal-stationarity, the existence of zeros and

6H2pDq is a Hilbert space of analytic functions in the open unit disk with square integrability on the boundary.
There is a one-to-one mapping between H2pDq and the Lebesgue space L2pTq, where T denotes the unit circle
tz P C : |z| “ 1u. Here we use a less well-known version of the Riesz-Fischer theorem to focus on the causal
equilibrium with one-sided MA representation. See Rudin (1987) and Lindquist and Picci (2015) for textbook
treatments. Isometric isomorphism is defined as bijective mappings that preserve distance.
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multiple poles implies non-monotonic and hump-shaped dynamics, and the existence of negative

poles implies oscillatory behavior.7 We summarize these patterns in Figure 1 using three simple

examples.
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Figure 1: The upper panel plots the case where a zero from MAp1q creates non-monotonic dynamics;
the middle panel plots the case where two poles from ARp2q create hump-shaped dynamics; the lower
panel plots the case where a negative pole from ARp2q creates oscillatory dynamics.

Second, for a more general class of analytic functions, the sequences of impulse responses

tAku
8
k“0 and tBku

8
k“0 correspond to the Laurent series expansions of the analytic functions Apzq

andBpzq in the open unit disk D. In this region, the Taylor series coincides with the Laurent series

so the impulse responses are linked to the derivatives of analytic functions at the origin (z “ 0):

Ak “
Apkqp0q
k!

, Bk “
Bpkqp0q
k!

, where Apkqp¨q and Bpkqp¨q denote the k-th order derivatives. Therefore,

the dynamic behavior in the time domain is connected to the local smoothness property of

analytic functions around the origin. For example, the non-rational function logp1 ` ρzq with

|ρ| ă 1 admits the following Taylor series expansion logp1 ` ρzq “
ř8

n“1
p´1qn`1ρn

n
zn, which

produces oscillatory dynamics with alternating signs.

7This interpretation shares the same spirit of Rondina and Walker (2018) where endogenous non-invertibility
in the signal process creates waves of optimism and pessimism. The resulting dynamics display oscillatory and
hump-shaped patterns.
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2.3 APFI Approach

The individual expectation Ei,tpt`1 is measurable with respect to investor i’s signal set. Therefore,

we conjecture that the signal representation of the individual expectation is given by Ei,tpt`1 “

FspLqsi,t ` FppLqpt, where the lag polynomials FspLq and FppLq are yet to be determined in the

equilibrium. Using (2.5) and the signal representation for Ei,tpt`1, we can express the equilibrium

condition (2.1) as

ApLqεt `BpLqηt “ β rFspLqεt ` FppLqpts `
1

1´ ρL
εt ` ηt

where the idiosyncratic innovations νi,t are washed out by aggregation (2.4). Using the method of

undetermined coefficients to match the polynomials associated with each exogenous innovation,

we obtain

Apzq “ β rFs pApzq, Bpzqq ` Fp pApzq, BpzqqApzqs `
1

1´ ρz
(2.7)

Bpzq “ βFp pApzq, BpzqqBpzq ` 1 (2.8)

where we apply the z-transform to replace the lag operator L with the complex variable z.

(2.7)–(2.8) is a system of functional equations in H2pDq. Fsp¨, ¨q and Fpp¨, ¨q are operators of

analytic functions originated from evaluating conditional expectations in the frequency domain.

Since information is endogenous, they are nonlinear in Apzq and Bpzq. The exact functional

forms for Fsp¨, ¨q and Fpp¨, ¨q are derived in Online Appendix S4. As Makarov and Rytchkov

(2012) and Huo and Takayama (2018) point out, the underlying system admits no finite-state

representation in general and therefore closed-form solutions are not feasible. In other words, the

equilibrium values of Apzq and Bpzq do not correspond to the z-transform of exact finite-order

ARMA processes.

Standard frequency-domain approaches are inherently analytical, which require complicated

exploration of the analyticity properties of Apzq and Bpzq. More importantly, they cannot handle

the case when closed-form solutions become unavailable due to information endogeneity. Instead,

we advocate a simple iterative approach to solve for the analytic functions Apzq and Bpzq, which

we call analytic policy function iteration (APFI). Motivated by the classic projection methods

in the time domain [see, e.g., Judd (1998)], the centerpiece of our approach is the fit of a basis

function to the numeric values of Apzq and Bpzq over a discretized set of grid points in the complex

plane. In this way, we transform the system of nonlinear functional equations (2.7)–(2.8) into a

system of linear algebraic equations.

To fix the idea, suppose ηt “ 0, @t. Then, we project the true solution of Apzq onto the space

8
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Figure 2: Analytic policy functions Akpzq (left panel) and implied impulse responses of pt to ε0 “ 1
(right panel). Parameter values are fixed at: β “ 0.98, ρ “ 0.9, γ “ 1.5, σε “ 1, and σν “ 3.

of rational functions

Apzq «
N0 `N1z ` ¨ ¨ ¨ `Nqz

q

1´D1z ´ ¨ ¨ ¨ ´Dpzp
, z P D (2.9)

with a finite number pp ` q ` 1q of real-valued coefficients tD1, . . . , Dpu and tN0, N1, . . . , Nqu.

The choice of rational functions (ARMA processes) as the basis function is natural. The class of

ARMA processes serves as the cornerstone for approximating covariance-stationary time series.

More importantly, rational functions are vital in numerical evaluations of expectational variables

via the Wiener-Hopf optimal prediction formula, as will be shown below.

In our numerical algorithm, we iterate on the function values of Apzq over a properly chosen

set of grid points tzju
N
j“1 in D. At each iteration, these function values tApzjqu

N
j“1 are used

to perform the projection. For example, if Apzq is indeed rational, the projection amounts to

solving a linear (collocation) equation. In this case, the ARMA coefficients resulting from the

projection fully characterize the behavior of Apzq on D. Meanwhile, there is no need to study

the analyticity of Apzq, which involves heavy algebraic work.8 We iterate this procedure until

the set of function values tApzjqu
N
j“1 converges.

To illustrate the accuracy of our method, we consider a special case of the simple model with

closed-form solution. In this case, we shut down the transitory shock ηt and model the persistent

8In the existing literature, analyticity requires that potential poles (i.e., singular points at which Apzq are not
analytic) of Apzq inside the unit circle be removed via lengthy algebraic procedures.
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shock as an ARMAp1, 1q process dt “ ρdt´1 ` εt ´ γεt´1 with 0 ă ρ ă 1 and γ ‰ 0.9 Figure

2 compares the exact solution Apzq with the approximated ones Akpzq, where k stands for the

number of iterations. The left panel shows Akpzq quickly converges to the true policy function

Apzq in the frequency domain. The right panel plots the convergence of the implied impulse

response function in the time domain. In Online Appendix S4 we show the convergence result

for the more general case.

2.4 Comparison with Existing Approaches

An essential difference between our approach and the conventional ARMA approximation tech-

niques is that our policy function iteration targets the finite set of function value tApzjqu
N
j“1,

while the rational function only serves as an intermediate tool to facilitate the computation.

Therefore, we do not have to worry about the exact ARMA form in updating the candidate

solution.

The symbolic nature of the existing frequency-domain strategies entails heavy algebraic work

even for small-scale models (like the above example). In contrast, our projection method is

entirely numerical and thus computationally efficient, even for high-dimensional DSGE models.

In particular, the policy function iteration features only one state variable (i.e., z) regardless of

the model size. Therefore, it does not suffer from the curse of dimensionality.

By truncating the infinite dimension of higher-order expectations (HOEs), Nimark (2017)

proposes a state-space approach to compute the approximated equilibrium with endogenous in-

formation. Compared to this approach, our APFI method delivers more flexibility. First, a trun-

cated VARp1q representation of the HOE-augmented state space may become unavailable. This

problem appears in many models with endogenous state variables (e.g., capital), non-invertible

ARMA shocks (i.e., confounding dynamics), or non-diminishing HOEs (e.g., (2.4) does not hold).

Second, when agents’ information structures are ex-ante different, the truncation approach be-

comes infeasible due to the explosion of cross-expectations in the state space. On such occasions,

our approach is more suitable. Lastly, the number of unknown parameters involved in the APFI

method is significantly smaller than the truncation approach, where the entire transition matrix

needs to be solved.

9Rondina and Walker (2018) derive the analytical solution as

pt “
1

L´β

„

LDpLq ´ βDpβq
hpLq

hpβq



looooooooooooooooooomooooooooooooooooooon

ApLq

εt, DpLq “
1´ γ L

1´ ρL
, hpLq “ ψθ ` p1´ ψq

θ ´ L

1´ θ L

where θ P p´1, 1q and β are the only two distinct solutions inside the unit circle of the equation zDpzqhpβq ´
βDpβqhpzq “ 0 and ψ “ σ2

ε{pσ
2
ν ` σ

2
εq. It can be shown when such a θ exists, pt follows an ARMAp2, 2q process

satisfying Apθq “ 0.
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3 Theoretical Framework

This section establishes the theoretical foundation of our method. Section 3.1 constructs a

canonical form for a general class of dynamic incomplete-information models, which will be used

in our baseline numerical algorithm. In Section 3.2, we provide three theorems that characterize

the key ingredients in the APFI framework. The appendix contains the proof of the theorems in

this section.

3.1 Canonical Representation

We study a class of linear or linearized rational expectations models with general information

structures. We cast the set of model equilibrium conditions into the following system of nx linear

expectational difference equations

l
ÿ

k“0

Akyt´k `
h
ÿ

k“0

BkEtyt`k “ 0nxˆ1 (3.1)

where the model variables yt and their coefficient matrices pAk, Bkq are partitioned as

yt ”

»

—

—

—

–

xt

at

st

fi

ffi

ffi

ffi

fl

, Ak ”
”

Axk Aak Ask

ı

, Bk ”

”

Bx
k Ba

k Bs
k

ı

and 0nxˆ1 is a nx ˆ 1 vector of zeros. The model system (3.1) comprises a non-expectational

block (i.e., “A” block) and an expectational block (i.e., “B” block).10 Etp¨q is a generalized

mathematical expectation operator conditional on certain information sets at time t, as will be

explained below. Our formulation adopts the timing convention that a variable is dated t if it is

realized at t, so there is no need to specify which elements of yt are predetermined; the structure

of the coefficient matrices tAku automatically pins down the list of predetermined variables. For

example, if the current capital stock kt is predetermined (i.e., realized at t ´ 1), then it will be

treated as a t´ 1 variable.

There are three types of model variables. First, st is a ns ˆ 1 vector of exogenous shocks with

nx ˆ ns coefficient matrices tAsk, B
s
ku. It follows a covariance-stationary VARMApps, qsq process

10It is necessary to include both the A0 and B0 coefficient matrices in (3.1) because the nowcast Etyt does
not necessarily equal its realization yt under certain type of information structure. For such an example, see
the dispersed information version of the Phillips curve in Online Appendix S5. Another reason is that some
elements of yt pertain to agents’ own decisions and hence are measurable with respect to their information sets.
In the computer program, however, these variables are not explicitly included in the agents’ signal sets used in
computing expectations. Therefore, the user needs to associate them only with the A0 coefficient matrix (i.e.,
outside the expectation operator) to avoid any measurability issue caused by the computer.
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driven by exogenous innovations

st “
ps
ÿ

k“1

Cs
kst´k `

qs
ÿ

k“0

Ds
kεt´k, εt „ Np0nεˆ1,Σεq (3.2)

where tCs
k, D

s
ku are ns ˆ ns and ns ˆ nε coefficient matrices, respectively.11 εt is a nε ˆ 1 vector

of i.i.d. Gaussian innovations with positive definite covariance matrix Σε ą 0. It contains both

individual and aggregate innovations, which are allowed to be arbitrarily correlated. In partic-

ular, the individual innovations satisfy the law of large numbers. Second, xt is a nx ˆ 1 vector

of endogenous variables with nx ˆ nx coefficient matrices tAxk, B
x
ku. It contains both individual

choices and aggregate outcomes. While individual choices in xt may depend on all innovations

in εt, aggregate outcomes in xt only respond to aggregate innovations in εt. Lastly, at “
ş1

0
xtdi

is the aggregation of xt across a continuum of agents indexed by i P r0, 1s with nx ˆ nx coeffi-

cient matrices tAak, B
a
ku. Specifically, at corresponds to the component of xt with respect to the

aggregate innovations. As an illustrative example, Online Appendix S4 shows how to cast the

simple model of Section 2 into the canonical form (3.1)–(3.2).

3.1.1 Expectational Block and Information Structure

The canonical form (3.1)–(3.2) allows for a flexible specification of the model environment and

its information structure. The model economy supported by the system (3.1) consists of a

continuum of agents with constant measure. Each agent is subject to three types of shocks: (i)

economy-wide aggregate shocks that affect all agents; (ii) group-specific shocks that only affect

a particular group or type of agents with non-zero measure; and (iii) idiosyncratic shocks that

satisfy the law of large numbers. While the first two types of shocks affect aggregate dynamics,

the third type washes out upon aggregation.

The generalized expectation operator Etp¨q that appears in (3.1) allows for heterogeneous

conditional expectations. That is, every time a variable in yt appears in the expectational block

of (3.1), its expectation is allowed to be associated with a different information set. To understand

this feature more precisely, suppose there are M types of expectations involved in the system.

Then (3.1) can be expanded as

l
ÿ

k“0

Akyt´k `
M
ÿ

m“1

h
ÿ

k“0

Bm,kEm,tyt`k “ 0nxˆ1 (3.3)

where we partition the original “B” coefficient matrices in (3.1) into a set of sparse matrices.12

11The VARMApps, qsq process (3.2) is covariance-stationary if and only if detpIns ´
řps
k“1 C

s
kz
kq ‰ 0 for all

z P D, where det denotes the determinant operator and Ins is a ns ˆ ns identity matrix.
12We thank an anonymous referee for suggesting this compact representation.
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The types of expectations are embedded in the index m “ 1, 2, . . . ,M , including individual

expectations with respect to different information sets as well as group expectations when in-

formation is homogeneous within each group but heterogeneous across groups. The informa-

tion set for each Em,t, denoted by Ωm,t, consists of the smallest closed subspace generated by

the history of exogenous signals stm,Ω ” tsm,Ω,t, sm,Ω,t´1, . . .u and that of endogenous signals

xtm,Ω ” txm,Ω,t, xm,Ω,t´1, . . .u, denoted by Ωm,t “ stm,Ω _ xtm,Ω. These two types of signals are

defined as subsets of exogenous shocks and endogenous variables, respectively, i.e., sm,Ω,t Ď st

and xm,Ω,t Ď xt.

In addition, Em,t in (3.3) may refer to composite expectation operators defined as linear combi-

nations of individual expectations about a variable in yt. Some examples include (i) economy-wide

average expectations, (ii) group or type-specific average expectations, and (iii) finite combina-

tions of individual expectations. For simplicity, in the discussion that follows, we focus on the

first two types of compositions.

In our numerical toolbox, we adopt the reductive representation (3.1) to lower the user’s input

cost. Instead of supplying a set of sparse matrices, the user will simply specify the information

set for each equation in the system that involves expectations. Online Appendix S3 provides a

user guide on this specification as well as the use of dummy variables in handling the case of

multiple types of expectations in the same equation.

Altogether, our canonical form can accommodate models with four different types of informa-

tion structure. The first type (termed as I.0) refers to the “imperfect, homogeneous information”

in which agents are equipped with the same signal set Ωt. The second type (termed as I.1) refers

to the “dispersed information”, where the signal structures are ex-ante identical, but idiosyn-

cratic (mean zero) realizations imply that individual-level expectations are ex-post different and

all noises aggregate to zero. The third type (termed as I.2) considers the “asymmetric infor-

mation” in which the signal structures are not ex-ante identical, but expectations are common

within groups. This type of information structure precludes purely idiosyncratic noises so that

Ωi,m,t “ Ωm,t for any agent i in group m. The fourth type (termed as I.3) considers the “asymmet-

ric, dispersed information”, where the signal sets are different across groups, and idiosyncratic

(mean-zero) realizations cause dispersion within groups.

Table 1 summarizes the types of information structure along with the corresponding examples

from the literature. While the time-domain truncation algorithm of Nimark (2017) focuses

primarily on the dispersed information setup (I.1), our framework has broader applicability and

covers most models in the literature.13

13The limitation of Nimark (2017) lies in the explosion of cross-expectations in the state space whenever
information is “asymmetric” as defined above.
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Information Structure Literature Example

I.0 (imperfect, homogeneous) Blanchard, L’Huillier and Lorenzoni (2013);

Chahrour and Jurado (2018)

I.1 (dispersed) Graham and Wright (2010); Nimark (2008, 2017);

Melosi (2017); Adams (2021)

I.2 (asymmetric) Barsky and Sims (2012); Kasa, Walker and Whiteman (2014);

Tang (2015); Kohlhas (2019)

I.3 (asymmetric, dispersed) HANK model of Angeletos and Huo (2021) (see Section 5.2)

Table 1: Summary of information structures. Nimark (2008) and Melosi (2017) consider two
types/groups of agents: households and firms. Households are equipped with full information while
firms are subject to dispersed information. The aggregation of expectations involves only group average
among firms.

3.1.2 Frequency-Domain Equilibrium

Now we derive the equilibrium fixed point of the model system (3.1) in the frequency domain. For

clarity of exhibition, we assume the expectational block is equipped with only one information set

Ωt (i.e., I.0). All results derived herein can be easily generalized to more complicated information

structures I.1–I.3.

We work with the VMAp8q representation of the model variables

yt “

»

—

—

—

–

xt

at

st

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

ΓxpLq

ΓapLq

ΓspLq

fi

ffi

ffi

ffi

fl

εt ” ΓypLqεt, ΓypLq “
8
ÿ

k“1

Γyk Lk (3.4)

in the vector space spanned by the history of structural innovations εt ” tεt, εt´1, . . .u. Some

remarks about (3.4) are in order. First, the equilibrium solution is defined as xt “ ΓxpLqεt, which

is a matrix generalization of (2.5). In particular, ΓxpLq is a nx ˆ nε matrix of lag polynomials

with the pi, jq-th element in Γxk measuring exactly the impulse response of the i-th variable in

xt`k to the j-th innovation in εt. Second, given the solution ΓxpLq, its aggregation ΓapLq can be

obtained by nullifying those columns of ΓxpLq corresponding to the idiosyncratic components in

εt. Third, the shock representation ΓspLq can be computed directly from its VARMA form (3.2).

As in Section 2, we implement the z-transform of ΓxpLq to obtain its functional equivalent in

the frequency domain Γxpzq P H2
nxˆnεpDq. H2

nxˆnεpDq denotes the generalization of the univariate

Hardy space for nxˆnε matrix of analytic functions, with each element Γx
pi,jqpzq P H2pDq.14 The

14Such a multivariate generalization is trivial using the Hilbert-Schmidt (trace) norm. See Lindquist and Picci
(2015).
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second moment properties of txtu are fully characterized by its spectral density function Sxp¨q,

defined as

Sxpωq “
1

2π
Γx

`

e´iω
˘

ΣεΓ
x
`

eiω
˘1
, ω P r´π, πs (3.5)

where ω denotes the frequency and i2 “ ´1. (3.5) is a special case of the covariance-generating

function evaluated on the unit circle (with normalization). Similarly, we can obtain the z-

transforms Γapzq P H2
nxˆnεpDq and Γspzq P H2

nsˆnεpDq. Collectively, it follows that Γypzq “

rΓxpzq1,Γapzq1,Γspzq1s1 P H2
p2nx`nsqˆnε

pDq.
We collect the endogenous and exogenous signals to derive the information set as

Ωt “

»

–

xΩ,t

sΩ,t

fi

fl “

»

–

ΓxΩpLq

ΓsΩpLq

fi

fl εt ” ΓΩ
pLqεt (3.6)

where ΓxΩpLq is a sub-block matrix of ΓxpLq corresponding to the endogenous signals, ΓsΩpLq is

a sub-block matrix of ΓspLq corresponding to the exogenous signals, and ΓΩpLq is the VMAp8q

representation of the information set. We then compute the conditional expectations in the

frequency domain using the celebrated Wiener-Hopf optimal prediction formula

Eryt`k|Ωt
s “

„

L´k ΓypLqΣεΓ
Ω
`

L´1
˘1
´

rΓΩ
`

L´1
˘1
¯´1



`

Σ´1
u
rΓΩ
pLq´1

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

FkpΓypLqq

Ωt, @k (3.7)

where the annihilation operator r¨s` removes the negative-power part of the function expressed in

terms of its series expansion, and FkpΓ
ypLqq is the signal VMAp8q representation of Eryt`k|Ωts.

The information set admits the Wold fundamental representation Ωt “ rΓΩpLqut, where ut is a

vector i.i.d. innovation process with covariance matrix Σu.
15 In Online Appendix S2, we provide

computational methods for finding the analytic function rΓΩpzq via factorization techniques of

(3.5).

The annihilation operator r¨s` is a linear operator in the space of analytic functions. Therefore,

it is straightforward to generalize (3.7) to the expectation of discounted future sum

8
ÿ

k“0

βkEryt`k|Ωt
s “

„

L

L´β
ΓypLqΣεΓ

Ω
`

L´1
˘1
´

rΓΩ
`

L´1
˘1
¯´1



`

Σ´1
u
rΓΩ
pLq´1

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

FkpΓypLq, βq

Ωt, (3.8)

where β P p0, 1q is the discount rate. Formula (3.8) is useful in many economic applications. For

example, Section 5.2 illustrates how our numerical toolbox can handle the type of expectations

15We can always orthogonalize ut by performing eigen-decomposition of Σu.
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in (3.8).

Substituting (3.4), (3.6), and (3.7) into (3.1) and applying the z-transform yield a system of

functional equations in the unknown policy functions Γypzq

l
ÿ

k“0

Akz
kΓypzq `

h
ÿ

k“0

BkFkpΓ
y
pzqqΓΩ

pzq “ 0, z P D (3.9)

(3.9) is a restatement of the equilibrium condition in the space of analytic functions H2
p2nx`nsqˆnε

pDq,
from which we derive a fixed-point condition used in our iterative algorithm.

3.2 Foundation

We solve the functional equations (3.9) using a projection method that fits the function values

Γxpzjq over a discretized set of grid points in the open unit disk, zj P D, j “ 1, 2, . . . , N . Like

other global solution methods, the projection performance hinges on the choice of an appropriate

basis function. In our iterative framework, we approximate Γxpzq using a VARMAppx, qxq process

xt «
px
ÿ

k“1

Cx
kxt´k `

qx
ÿ

k“0

Dx
kεt´k (3.10)

or equivalently, a rational function in the frequency domain

Γxpzq « Cx
pzq´1Dx

pzq, Cx
pzq ” Inx ´

px
ÿ

k“1

Cx
k z

k, Dx
pzq ”

qx
ÿ

k“0

Dx
kz

k (3.11)

where tCx
k , D

x
ku are nx ˆ nx and nx ˆ nε coefficient matrices, respectively. When the objective

function Γxpzq is rational, e.g., in the exogenous information case, the approximation is exact in

theory.

The classical idea of approximating analytic functions using rational functions dates back to the

Runge theorem [see, e.g., Rudin (1987)]. However, our objective here is more involved as we are

solving for analytic functions in H2pDq that correspond to sequences of square-summable impulse

responses. Thus, the approximation accuracy needs to be established under the appropriate

norm related to covariance-stationarity. To this end, we establish the following theorem on the

denseness condition of rational functions in H2pDq that justifies our approximation.

Theorem 3.1 (Denseness of Rational Functions). Define the set of nx ˆ nε matrices of rational

analytic functions that correspond to VARMApp, qq processes as Qpp,qq, where each element of
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Qpp,qq is of the form

Q
pm,nq
pp,qq :“

#

cpm,nq
śq

j“1p1´ b
pm,nq
j zq

śp
i“1p1´ a

pm,nq
i zq

: a
pm,nq
i , b

pm,nq
j , cpm,nq P C, |apm,nqi | ă 1, @i, j

+

for m “ 1, 2, . . . , nx and n “ 1, 2, . . . , nε. Then
Ť

p,q PN Qpp,qq is dense in H2
nxˆnεpDq.

It follows from Theorem 3.1 that the set of rational analytic functions is dense in H2
nxˆnεpDq.

The key implication of this result is that one can always use a set of VARMApp, qq processes

to replicate any covariance-stationary equilibrium dynamics. In the mean squared sense, the

approximation can achieve arbitrary accuracy, provided that the underlying (true) equilibrium

process is not too persistent or too close to having a unit root.

Next, we construct the appropriate state-space grid of points zj P D, j “ 1, 2, . . . , N , in the

open unit disk. We choose the grid points within the real subset U “ p´1, 1q Ă D. By placing

tzju
N
j“1 in the unit interval, we bypass the significant complication of handling complex numbers

in the numerical algorithm that could compromise accuracy. However, two questions naturally

arise from this restriction. First, is a solution to the functional equation (3.9) restricted to U
a legitimate covariance-stationary equilibrium of the model? Second, does the projection of the

function values of Γxpzq defined on U deliver an accurate approximation to the true function,

which is defined on the bigger set D? To address these questions, we establish the following

theorem using the theory of analytical continuation and the theory of convergence of analytic

functions.

Theorem 3.2 (Analytic Continuation and Convergence Criterion). Suppose Ψxpzq P H2
nxˆnεpDq

and let Ψypzq “ rΨxpzq1,Ψapzq1,Γspzq1s1 satisfy

l
ÿ

k“0

Akz
kΨy

pzq `
h
ÿ

k“0

BkFkpΨpzqqΨ
Ω
pzq “ 0, z P U “ p´1, 1q (3.12)

with ΨΩpzq “ rΨxΩpzq1,ΓsΩpzq1s1 for a given selection of endogenous and exogenous signals. Then

a stationary equilibrium exists for model (3.1) and is given by Γxpzq “ Ψxpzq. More generally, let

Γxpzq be any analytic function in the Hardy space H2
nxˆnεpDq. If there exists an analytic function

Ψxpzq such that Ψxpzq “ Γxpzq for all z P p´1, 1q, then Γx “ Ψx on the entire open unit disk D.

Finally, if a sequence of rational functions tΓxnpzqunPN P H2
nxˆnεpDq converges pointwise in U to

a function Γxpzq, then limnÑ8 }Γ
xpzq ´ Γxnpzq}H2 “ 0.

The first part of Theorem 3.2 states that the analytic continuation of the solution to (3.12)

is the solution to the analytic continuation of the functional equation (3.12), which is (3.9).

Therefore, solving the equation over the grid from U is sufficient to deliver the model equilibrium.

This result is analogous to the law of permanence of functional equations. By the uniqueness of
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the analytic continuation, an immediate implication is that if (3.12) has a unique solution, the

model admits a unique equilibrium. In our numerical algorithm, the policy function values within

each iteration emerge from rational functions. By the second part of Theorem 3.2, the projection

based on U delivers an accurate reconstruction of the original policy function defined on D. More

importantly, when iterations on the finite vector tΓxpzjqu
N
j“1 converge in the pointwise manner,

we find the fixed point of the functional equations in H2
nxˆnεpDq. This result is ensured by the

last part of Theorem 3.2, which establishes a convergence criterion for our numerical algorithm.

In our APFI framwork, we compute expectational variables using the Wiener-Hopf optimal

prediction formula, which requires computing the annihilation operator r¨s` for the function

Θpzq ” z´kΓxpzqΣεΓ
Ω
`

z´1
˘1
´

rΓΩ
`

z´1
˘1
¯´1

(3.13)

Without loss of generality, we assume now that Θpzq is univariate but all analyses contained here

continue to apply to the case of matrix-valued function. By inspection, Θpzq is not analytic in the

open unit disk D due to the cross-spectral density term. Future expectations also induce poles

at z “ 0. Elementary complex analysis indicates that Θpzq has different power (Laurent) series

expansions in different regions of convergence (ROC) inside D. Different ROCs are partitioned

as annuli centered at the origin (z “ 0) according to the positions of singularities (poles) on the

complex plane.16 Given an annulus R1 ă |z| ă R2 with 0 ă |R1| ă |R2| ă 1, we can define its

two-sided Laurent series expansion and the corresponding annihilation as

Θpzq “
8
ÿ

k“´8

Θkz
k, rΘpzqs

`
“

8
ÿ

k“0

Θkz
k

Then the questions we face are: what is the appropriate region to perform the annihilation in

computing the Wiener-Hopf prediction, and how do we calculate the annihilation? The following

theorem provides the answers to these questions.

Theorem 3.3 (Annihilation). Suppose Γxpzq is rational and the Wold fundamental function

(spectral factor) rΓΩpzq is invertible on the closed unit disk, i.e., rΓΩpzq´1 is analytic on the closed

unit disk.17 Then the coefficient matrices tΘku
8

k“0 in the annihilation of Θpzq in (3.13) are given

by the inverse discrete time Fourier transform (IDTFT) around the unit circle T “ tz P C : |z| “

16The open unit disk D is a special annulus 0 ď |z| ă 1 with the exception that z “ 0 is in the region of
analyticity. One can also define the annulus of ROC that does not center at 0; however, in any particular ROC
in which Θpzq is analytic, its Laurent series expansion is unique.

17The imposition of invertibility is slightly stronger than the Wold fundamentality as analyticity is required on
the unit circle. See Forni, Gambetti and Sala (2019).
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1u

Θk “

»

–

1

2πi

¿

T

Θpzqz´k
dz

z

fi

fl , k “ 0, 1, 2, . . . (3.14)

where
ű

denotes the (counterclockwise) contour integral. For any ε ą 0, there exists N P N such

that

ΘNpzq “

N{2´1
ÿ

k“´N{2

Θkz
k, }ΘNpzq ´Θpzq}L2 ă ε

where ‖¨‖L2 denotes the L2 norm on L2pTq. The positive part of the coefficient matrices tΘku
N{2´1
k“0

can be approximated via the inverse discrete Fourier transform (IDFT)

Θk «
1

N

N´1
ÿ

n“0

Θ

ˆ

exp

ˆ

´i
2πn

N

˙˙

exp

ˆ

i
2πn

N
k

˙

, k “ 0, 1, . . . , N{2´ 1 (3.15)

We treat the signal as exogenous with a rational function representation during each algorithm

iteration, even when information is endogenous. In this case, it is easy to show the resulting

solution Γxpzq is also rational, and the first part of Theorem 3.3 implies that the annihilation

should be computed in the ROC that includes the unit circle T. This result is connected to

the derivation of the Wiener-Hopf formula. Therefore, we compute the annihilation coefficient

matrices using the IDTFT formula (3.14).

The second part of Theorem 3.3 considers the numerical approximation of the annihilated

function rΘpzqs
`

, which is an infinite series. To this end, we first approximate the original analytic

function on the unit circle using the two-sided finite partial sum ΘNpzq. The approximation

can be made arbitrarily accurate with increasing order N by the Riesz-Fischer theorem. We

then compute the positive part of this partial sum using the IDFT formula (3.15). IDFT is a

classical method of computing the inverse Fourier transform with superior numerical efficiency.

In particular, we have used the fact that Θpzq can be evaluated at evenly-spaced points on the

unit circle indexed by different frequencies ωn “ 2πn{N , n “ 0, 1, . . . , N ´ 1, using formula

(3.13).

The standard way of computing the annihilated function rΘpzqs
`

in the literature follows

Hansen and Sargent (1980). This method characterizes the annihilated function as the difference

between the original function and the principal part of its Laurent series expansion around the

singularities inside the unit circle. It provides the closed-form expression for the annihilation.

Using the residue theorem from complex analysis, one can compute the coefficients associated

with the principal part. Since the residue theorem formula uses the values of endogenous functions
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at the singularities, these functional constants are yet to be determined in the equilibrium. The

solution of these intertwined constants then determines the equilibrium existence and uniqueness.

Tan and Walker (2015) and Huo and Takayama (2018) generalize this formula to the multivariate

case with higher-order (repeated) singularities.

The existing approach incurs a significant amount of symbolic algebra, including lengthy par-

tial fraction simplifications. The equilibrium determination procedure (“roots counting”) is also

non-trivial [Tan and Walker (2015)]. Such a procedure is infeasible in models with endoge-

nous information since the pole structure of Θpzq is not designated ex-ante but endogenous and

changes across iterations. In medium or large-scale models, such a method also leads to an alge-

braic nightmare. In contrast, the discrete Fourier transform method we develop here addresses

the underlying problem by sidestepping the functional approach and the equilibrium determina-

tion procedure; it uses the IDFT technique to achieve fast and algorithmic computation. This

method also connects well with our overall APFI strategy—transforming functional operations

into numerical evaluations.

We emphasize that there is one restriction in Theorem 3.3: the forecasting objective cannot

have any unit root (i.e., display any random walk property); otherwise, the Riesz-Fischer theorem

fails, and the computation is theoretically invalid. Therefore, our baseline APFI algorithm only

handles stationary equilibrium systems.

4 Baseline Algorithm

Based on the theoretical framework, we propose the baseline APFI algorithm as follows. Ac-

cording to Theorem 3.1, we begin with a conjecture about the as-yet-unknown matrix of rational

functions Γxp¨q in (3.11). This initial set of policy functions for xt is then used along with Theo-

rem 3.3 to calculate the expectational variables tEtxt`kuhk“0 in (3.1). Next, we obtain an updated

set of policy functions for xt by solving the functional equations (3.9). By Theorem 3.2, it suffices

to solve for the values of Γxpzq over a discretized set of grid points on the open unit interval.

Evaluating (3.9) at these nodes transforms the functional equations into simpler systems of linear

algebraic equations. If the distance between the guess and updated policy values is less than

a pre-specified criterion, the policy functions have converged to the equilibrium according to

Theorem 3.2. Otherwise, we set the updated policy functions as a new guess and repeat the

iterations until convergence.

4.1 Implementation

Without loss of generality, we make two simplifying assumptions about our canonical form. These

assumptions ease the exposition but do not affect any of the results presented in this section.
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First, we eliminate the aggregation variables at whose properties are completely summarized by

the endogenous variables xt. From (3.9) we expand the functional fixed-point condition as

l
ÿ

k“0

Axkz
kΓxpzq `

l
ÿ

k“0

Askz
kΓspzq `

h
ÿ

k“0

BkFkpΓ
y
pzqqΓΩ

pzq “ 0, z P D (4.1)

where Γypzq “ rΓxpzq1,Γspzq1s1. Second, we do not distinguish between individual and aggregate

variables in equilibrium so that a priori each element in xt is allowed to depend on all elements

in εt.

The baseline APFI algorithm operates under the following regularity condition.

Assumption 4.1 (Regularity). The full-information version of the simplified model system (4.1)

admits a covariance-stationary solution. Let Axpzq “
řl
k“0A

x
kz

k. The finite-order polynomial

matrix function Axpzq is invertible on the closed unit disk D
Ť

T, i.e., its determinant polynomial

detAxpzq has no root inside the closed unit circle. If l “ 1, the invertibility condition requires that

the matrix pAx0q
´1Ax1 has spectral radius smaller than 1, i.e., the absolute value of its eigenvalues

are all smaller than unity.18

The stationarity assumption on the full-information solution rules out non-stationarity orig-

inating from the model’s primitive structure. This restriction is necessary since our baseline

APFI algorithm, which is based on the canonical form, cannot handle non-stationary solutions

such as random walk equilibria (see the discussion in Section 3.2). Suppose the model admits a

stationary solution under full information. In this case, its solution under incomplete informa-

tion is also likely to be stationary since information frictions generally lead to dampened and

sluggish dynamics compared to the full-information case. The regularity condition in Assump-

tion 4.1 holds for a wide range of models, including those with endogenous physical states (see

Section 5.1 and 5.2). When l “ 0 (i.e., no predetermined variables), the invertibility assumption

is automatically satisfied.

Assumption 4.1 ensures that our baseline APFI algorithm induces a well-defined (nonlinear)

operator A : H2
nxˆnεpDq ÞÑ H2

nxˆnεpDq, and (4.1) becomes the fixed point of the algorithm

operator

Γxpzq “ A pΓxpzqq ” ´Axpzq´1AspzqΓspzq ´ Axpzq´1

˜

h
ÿ

k“0

BkFkpΓ
y
pzqqΓΩ

pzq

¸

(4.2)

where Aspzq “
řl
k“0 A

s
kz

k. In Proposition 2 of the appendix, we show that with additional

restrictions the operator A is stable (i.e., non-explosive) everywhere. We now describe the

18If Ax0 is singular, we compute the pseudo inverse pAx0q
` instead. To compute pAx0q

`, let the singular value
decomposition of Ax0 be given by Ax0 “ USV 1, where the matrices U and V satisfy U 1U “ V 1V “ I but are not
necessarily square, and S is a square and diagonal matrix with non-zero entries. Then pAx0q

` “ V S´1U 1.
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algorithm implementation as follows.

Algorithm 4.2 (Baseline APFI). Given Assumption 4.1, the baseline APFI algorithm is sum-

marized by a sequence of easily implementable steps as follows:

1. Initialization. Discretize the state space U “ p´1, 1q into N grid points tzju
N
j“1. For

simplicity, we let tzju
N
j“1 be evenly spaced on U. Set the initial policy function values

tΓxpzjqu
N
j“1.

2. Projection. Fit the z-transform of the VARMAppx, qxq representation for xt in (3.11) to

the set of data points tpzj,Γ
xpzjqqu

N
j“1, i.e.,

Cx
pzjq

´1Dx
pzjq “ Γxpzjq, j “ 1, 2, . . . , N (4.3)

and obtain the VARMA coefficient matrices
 

Cx
1 , . . . , C

x
px

(

and
 

Dx
0 , D

x
1 , . . . , D

x
qx

(

.

3. Evaluation. For each node zj, j “ 1, 2, . . . , N , evaluate the z-transforms of expectational

variables tFkpΓ
ypzjqqΓ

Ωpzjqu
h
k“0 in (4.1) based on the information set (3.6), the Wiener-

Hopf formula (3.7), and the fitted policy functions Γxpzq “ Cxpzq´1Dxpzq in step 2.

4. Updating. For each node zj, j “ 1, 2, . . . , N , compute the updated policy function value

Γ̂xpzjq implied by (4.1) via solving the following systems of linear algebraic equations

AxpzjqΓ̂
x
pzjq “ ´A

s
pzjqΓ

s
pzjq ´

h
ÿ

k“0

BkFkpΓ
y
pzjqqΓ

Ω
pzjq (4.4)

where the right hand side is known by step 3. Note that systems derived from even

small-scale models may have singular matrix Axpzjq, so that multiplying through (4.4) by

Axpzjq
´1 to obtain Γ̂xpzjq is not possible. Instead, we multiply through (4.4) by the pseudo

inverse of Axpzjq.

5. Recursion. If the relative distance between the guess and updated policy function values

is smaller than a pre-specified criterion ε, i.e.,

max
z1,...,zN

∥∥∥Γxpzjq ´ Γ̂xpzjq
∥∥∥

‖Γxpzjq‖
ă ε

where ‖¨‖ denotes some matrix norm, then stop and treat tΓ̂xpzjqu
N
j“1 as the true policy

function values. Otherwise, set Γxpxjq “ Γ̂xpzjq, j “ 1, 2, . . . , N , and go back to step 2.

A distinct advantage of Algorithm 4.2, as we discussed in Section 2.3, is that the iteration

centers around the vector of function values tpzj,Γ
xpzjqqu

N
j“1 rather than any particular VARMA
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parameterization of the true solution. On the other hand, the method of VARMA fitting only

serves as an auxiliary tool to facilitate the computation.19 This approach is different from Sargent

(1991) and Huo and Takayama (2018) in that we sidestep the procedure of characterizing the

updated VARMA parameterization, which greatly simplifies the computation.

During each iteration of Algorithm 4.2, we solve the model as if agents take the signal struc-

ture as an exogenous VARMA process. The resulting data points tpzj,Γ
xpzjqqu

N
j“1 then corre-

spond to rational functions even though the true equilibrium solution under endogenous infor-

mation may not be rational. In this case, theoretically there exist finite orders ppx, qxq such that

Cxpzq´1Dxpzq “ Γxpzq for all z P D. Practically, we fix the orders ppx, qxq across all iterations

of Algorithm 4.2. We find that ppx, qxq “ p10, 10q are sufficient for most economic applications,

though we recommend setting ppx, qxq “ p5, 5q for small systems. Online Appendix S2 provides

computation details of the VARMA fitting method. In our MATLAB toolbox, we also allow for

automatic order reduction whenever the fitted VARMA process is non-stationary. This optional

feature can be useful for models with non-stationary equilibria, such as the Graham and Wright

(2010) model discussed in Section 5.3. We discuss this option in Online Appendix S3.

4.2 Equilibrium Existence and Multiplicity

In Proposition 3 of the appendix, we establish the equilibrium existence and uniqueness for

the simplified model system (4.1) under exogenous information. The driving force behind the

uniqueness result is that when information is exogenous (including the full-information case), the

frequency-domain expectations operators become linear. In this case, the variances of higher-

order average expectations are diminishing and bounded by those of lower-order average expecta-

tions. When information is endogenous, on the other hand, these operators are in general highly

nonlinear. Therefore, one can no longer apply the volatility bounds conditioning on two distinct

endogenous information sets. In this case, it is difficult to provide a general characterization for

the equilibrium existence and uniqueness.20

Endogenous information may create multiple equilibria. When learning from endogenous sig-

nals is associated with non-fundamental shocks, self-fulfilling sentiment equilibria can arise as

in Acharya, Benhabib and Huo (2021). Multiplicity may also emerge when endogenous sig-

nals contain non-invertible (confounding) moving-average components as in Rondina and Walker

19As shown in Online Appendix S2, we cast the signal process in a VARMA parametric form to derive its Wold
representation using the state-space method.

20From a technical point of view, constructing a closed, bounded, and convex self-mapping for A on the subset
of the unbounded space H2

nxˆnεpDq is challenging. Thus, powerful tools like the Schauder-Tychonoff fixed-point
theorem cannot be applied. On the other hand, bounded subsets in H2

nxˆnεpDq are normal families in the Montel
space of analytic functions, as implied by the Montel theorem. Therefore, one can show that under the given
assumptions, A defines a compact operator with respect to the topology of uniform convergence on compact
subsets of D. However, compactness does not hold in general with respect to the norm topology.
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(2018).21 In section 5.3 we provide an example in which multiple equilibria appear as a result

of the interaction between the model’s primitive structure and its confounding dynamics. Due

to the iterative nature, our baseline APFI algorithm does not select among multiple equilibria

and may converge to different equilibria depending on the initial conjecture. There is also no

guarantee that the baseline APFI algorithm can find an equilibrium if it exists. The selection

of equilibria is possible when prior knowledge of the equilibrium structure is available. In a

related paper, Adams (2021) studies a class of dispersed-information models under information

structure I.1. He characterizes the uniqueness of a “stable” equilibrium class that satisfies the

local contraction property within a certain neighborhood. The uniqueness condition in his paper

is characterized by the operator norm of the Fréchet derivative of the signal polynomial in the

space of Laurent (Toeplitz) operators.

4.3 Extensions

While we present the baseline algorithm based on the simplified system (4.1), our MATLAB tool-

box implements the algorithm using the general system (3.1) and such an extension is straightfor-

ward. When xt contains both individual choices x1t and aggregate outcomes x2t, and εt contains

both individual innovations ε1t and aggregate innovations ε2t, we partition the VMAp8q repre-

sentation (3.11) conformably as

»

–

x1t

x2t

fi

fl

loomoon

xt

“

»

–

Γx11pLq Γx12pLq

0 Γx22pLq

fi

fl

loooooooooomoooooooooon

ΓxpLq

»

–

ε1t

ε2t

fi

fl

loomoon

εt

.

We then solve for the updated policy functions Γx11pzq and rΓx12pzq
1,Γx22pzq

1
s
1
in two separate blocks

in step 4 of Algorithm 4.2.

In the solving routine of our toolbox, solve.m, we offer a comprehensive list of options that

help tailor the implementation of Algorithm 4.2 to a specific problem at hand. These options

include the initial guess of the policy functions, the convergence criterion, the minimal and

maximal numbers of iterations, the VARMA fitting orders, the number of grid points in the

discrete Fourier transform, and the updating step size. We find these options valuable in terms

of improving the stability and efficiency of our method. The user only needs to express the model

in our canonical form and specify the model’s information and variable structures—an effort no

more complicated than using the DYNARE software. We discuss these implementation details in

Online Appendix S3. As will be shown in the next section, the toolbox also allows the user to go

21Consider an endogenous signal of the form pt “ P pLqpL´λq, where the confounding dynamics is indexed by
|λ| ă 1 and P pzq P H2pDq. Multiple equilibria exist when (i) more than one value of λ satisfies the equilibrium
restrictions or (ii) there are multiple non-invertible roots in the solution representation of pt.
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beyond the canonical form and call each routine independently when, for example, Assumption

4.1 does not hold.22

5 Applications

We provide three macroeconomic models to demonstrate the use of our APFI algorithm and

its accuracy, applicability, and flexibility. The first example is a New Keynesian DSGE model

with a predetermined physical state and features learning from policies as in Melosi (2017).

The second example is the HANK model of Angeletos and Huo (2021). In terms of using the

canonical form of our baseline APFI framework, the two examples are similar in that they both

feature predetermined variables, and we consider asymmetric and endogenous information sets

among agents. In addition, the HANK example allows for endogenous wealth distribution. As a

step-by-step user guide, Online Appendix S5 and S6 demonstrate how to cast these models into

the canonical form used in our baseline APFI algorithm.

In the final example, we consider the dispersed-information RBC model of Graham and Wright

(2010) that violates the regularity condition in Assumption 4.1 and features non-stationary and

multiple equilibria. We developed three extended APFI algorithms to solve this model. We

also compare their computation performance with the time-domain truncation approach and the

closed-form solution. Online Appendix S7 provides detailed documentation on these algorithms

along with a user guide for customized coding using our toolbox’s individual routines. Unless

stated otherwise, all lower case variables in this section have been log-linearized around their

steady states.

5.1 DSGE Model with Learning from Policy

5.1.1 Learning from Monetary Policy

The model features a representative household, a continuum of monopolistic competitive inter-

mediate goods firms with Calvo (1983) pricing, a final goods firm, and a monetary authority.

Following Melosi (2017), we first assume the household is equipped with full information while the

intermediate firms are subject to dispersed information. Melosi (2017) introduces measurement

22When Assumption 4.1 is violated, the baseline APFI algorithm can still be applied by recasting the fixed
point condition (4.1) as

A0Γxpzq “ ´
l
ÿ

k“1

Axkz
kΓxpzq ´

l
ÿ

k“0

Askz
kΓspzq ´

h
ÿ

k“0

BkFkpΓ
ypzqqΓΩpzq, z P D

Iteration based on the above condition is well-defined and may converge to a stationary solution if the expectational
block anchors the explosive behavior in the non-expectational block. However, in practice, the baseline APFI
algorithm can be ill-behaved and unstable under this circumstance.
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Figure 3: Analytic policy functions to monetary authority’s inflation measurement error shock. Param-
eter values follow Melosi (2017).

error shocks for both inflation πt and output yt in the monetary policy rule and highlights the

signaling effects of monetary policy. A crucial assumption in his analysis is that the intermediate

firms only learn from a single endogenous variable—the nominal interest rate it.

This example serves two purposes. First, we illustrate converting a model solution from its

analytic function in the frequency domain to its impulse response function in the time domain.

Second, our results yield further insights on the sensitivity of the model solution to firms’ infor-

mation sets. Here we consider several different information settings, allowing firms to either learn

from it, πt, and yt each only, from both it and πt, and from both πt and yt. We also consider the

full information case as a benchmark.23 Alternative information sets can be easily specified in

our MATLAB toolbox by changing a few lines of code. Online Appendix S5 contains the formal

model setup.

Figure 3 plots the analytic policy functions of output, inflation, and nominal interest rate to

the inflation measurement error shock in the frequency domain under alternative information

sets. Different information sets yield strikingly different policy functions (i.e., model solutions).

For example, when firms are only learning from it as in Melosi (2017), the analytic policy function

of inflation has a zero (root) inside the open interval p´1, 1q. In contrast, when firms learn from

other endogenous variables, the analytic policy functions are either identically zero or have no

zeros in p´1, 1q.

Figure 4 converts the above analytic policy functions to the impulse response functions in the

time domain. When firms are only learning from it, the impulse responses of output, inflation, and

nominal interest rate to a positive inflation measurement error shock are all hump-shaped, and

the inflation response features a price puzzle—a monetary tightening raises the initial price level.

By stark contrast, both the prize puzzle and the hump disappear when firms are equipped with

23When intermediate firms are learning from all three endogenous variables (i.e., it, πt, and yt), the model
solution becomes indistinguishable from the full-information solution.
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Figure 4: Impulse responses to a positive, one standard deviation inflation measurement error shock.
Parameter values follow Melosi (2017).

full information. The hump-shaped impulse responses to a contractionary monetary shock is a

universal finding that is robust to many identification schemes [see, e.g., Christiano, Eichenbaum

and Evans (1999)]. While a thorough investigation of the impacts of different information sets

is beyond the scope of this paper, our results suggest that information frictions may be as

important as many other commonly used real and nominal rigidities in determining a DSGE

model’s empirical performance.

5.1.2 Learning from Fiscal Policy

The recent COVID-19 pandemic has been a substantial shock to the U.S. economy. In response to

the significant public health and economic crisis, the federal government has conducted a series of

fiscal expansions. The unprecedented large-scale fiscal stimulus, however, raises concerns about

its impact on inflation. In a recent article, Larry Summers (2021) warned that the fiscal stimulus

“will set off inflation pressures of a kind we have not seen in a generation”. One day later,

Paul Krugman (2021) took a different approach and argued that “even a very hot economy only

leads to modest inflationary overheating”. We offer novel insight into this ongoing debate by

considering how fiscal policy affects inflation under various information structures. We also use

this example to demonstrate how the APFI framework handles multiple types of incomplete

information sets.

We first augment the dispersed-information DSGE model of Section 5.1.1 by a simple fiscal

sector. The fiscal authority imposes lump-sum net taxes Tt and issues one-period nominal bond

Bt. Let Bt{Pt denote the real debt where Pt is the price level. The fiscal authority’s primary

surplus is defined by St “ Tt ´ Gt. We assume there is no government spending, i.e., Gt ” 0.
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The government’s flow budget constraint is given by

1

Rt

Bt

Pt
` St “

Bt´1

Pt
(5.1)

To close the fiscal sector, we adopt a simple rule for the primary surplus. Let st, bt denote

log-deviations of St, Bt{Pt from their steady state values. The fiscal rule is of the form

st “ γbt´1 ` ξs,t, ξs,t “ ρsξs,t´1 ` η
s
t , ηst „ Np0, σ2

sq (5.2)

where the parameter γ governs how aggressively the primary surplus responds to the lagged debt.

Let the parameter φπ govern the responsiveness of nominal interest rate Rt to inflation πt. Our

subsequent analysis focuses on the active monetary (φπ ą 1) and passive fiscal (γ ą 1) policy

regime [see Leeper (1991)], which implies a Ricardian fiscal policy under full information. In

particular, given lump-sum taxation, the impulse responses of output to fiscal innovations (i.e.,

ηst ) are trivially zero. Moreover, once we shut down all non-policy shocks, inflation is a purely

monetary phenomenon. As the impulse responses of inflation to ηst are also zero, changes in the

size of government debt bt have no impact on inflation.

The dispersed-information DSGE model of Section 5.1.1 permits incomplete-information firms.

We enrich the analysis here by allowing for an incomplete-information representative household

as well. Furthermore, we allow households and firms to observe differential, non-nested, and

endogenous information. To the best of our knowledge, the extension of introducing incomplete

information to both the supply and demand sides is a novel contribution to the literature. It

also highlights the flexibility of our methodology and numerical toolbox.

We maintain the key message of Melosi (2017) that policy variables can serve as endogenous

signals to the private sector. There are three policy variables—the nominal interest rate it, the

primary surplus st, and the real debt bt. To focus on the implications of the fiscal signals, we

include the history of it in both the household’s and firms’ information sets. We consider four

cases where only one fiscal variable (either st or bt) enters either the representative household’s

or the intermediate firms’ incomplete information sets.24 That is,

Case 1: IHHt “ tit´j : j ě 0u, IFirmt,i “ tit´j, st´j, a
i
t´j : j ě 0u

Case 2: IHHt “ tit´j : j ě 0u, IFirmt,i “ tit´j, bt´j, a
i
t´j : j ě 0u

Case 3: IHHt “ tit´j, st´j : j ě 0u, IFirmt,i “ tit´j, a
i
t´j : j ě 0u

Case 4: IHHt “ tit´j, bt´j : j ě 0u, IFirmt,i “ tit´j, a
i
t´j : j ě 0u

24If neither primary surplus st nor real debt bt enters the households’ and firms’ information sets, then the
Ricardian equivalence of fiscal policy still holds. On the other hand, if primary surplus enters one private sector’s
information set while real debt enters the other private sector’s information set, the fiscal impulse responses are
quantitatively small, indicating small deviations from the Ricardian fiscal policy.
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Figure 5: Impulse responses (% deviations) of output and inflation to one standard deviation decrease
in the primary surplus shock (i.e., ηs0 “ ´σs) under different information environments. Non-fiscal
parameter values follow Melosi (2017). Fiscal parameter values follow the high-pass posterior estimates
of Tan (2019).

These cases can be easily specified in our toolbox by letting various variables enter different

agents’ information sets.

It is worth noting that when a fiscal variable enters the household’s information set (i.e., Case 3

and Case 4), the two private sectors’ information sets become non-nested. That is, IHHt Ć IFirmt,i

and IFirmt,i Ć IHHt . Non-nested information sets further complicate the issue of higher-order

expectations (HOEs). Since

Case 1 and 2: EHHt EFirmt,i πt “ EFirmt,i EHHt πt “ EHHt πt

Case 3 and 4: EHHt EFirmt,i πt ‰ EFirmt,i EHHt πt ‰ EHHt πt,

non-nested information sets introduce additional HOEs. Time-domain methodologies require the

inclusion of a large number of HOEs to form a suitable state space. A direct consequence of non-

nested information sets is that time-domain methods will suffer from the curse of dimensionality

even more. More importantly, the underlying law of motion for HOEs may not take the simple

VARp1q form as typically postulated in the existing time-domain methods [see, e.g., Nimark

(2008)].

Figure 5 plots the impulse responses of output yt and inflation πt to one standard deviation

decrease in the primary surplus shock (i.e., ηs0 “ ´σs). Different information sets generate

qualitatively different initial responses of output and inflation at t “ 0. Compared to the full-
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information model, both output and inflation display non-trivial responses in all cases. The fiscal

shock could either expand or contract the real output and be either inflationary or deflationary.

Why are the impacts of fiscal shocks qualitatively different under incomplete information? Be-

sides the conventional roles of policy instruments, these policy variables also serve as endogenous

signals that reveal the economic fundamentals. Different perceived fundamentals affect the pri-

vate sectors’ expectation formation and decision making, thereby generating strikingly different

impulse responses.

Comparing the left and right panels of Figure 5 suggests that the fiscal impacts also differ

quantitatively. The most undesirable case may be Case 1, where output drops the most on

impact, and inflation increases significantly. These effects quickly reverse themselves in the

subsequent periods. Interestingly, under the current parameterization, both output and inflation

deviate little from zero as long as one private sector (either the household or firms) learns from

the real debt bt. Since the real value of government debt must be equal to the present value

of current and expected future primary surpluses, knowing the history of real debt provides the

private sector with much information about the history of primary surpluses. As one private

sector nearly figures out the fiscal shock, the resulting fiscal impacts deviate little from its full-

information, Ricardian benchmark through the general equilibrium effect, even though the other

private sector pays no attention to bt.

5.2 HANK Model with Incomplete Information

Next we consider the incomplete-information heterogeneous agent New Keynesian (HANK)

model of Angeletos and Huo (2021) with endogenous wealth distribution. This model features

consumer heterogeneities in business cycle exposure and marginal propensity to consume (MPC).

There are two groups of consumers, indexed by g “ t1, 2u with respective mass πg “ 0.5. Let wg

denote the survival rate of individuals of each group in each period, and φg denote the exposure

to business cycles. The (log) income of group g is yg,t “ φgyt, where φg ě 0 is the elasticity of

group g’s income with respect to the aggregate income (i.e., output) and π1φ1 ` π2φ2 “ 1. The

MPC of each group is given by 1 ´ βwg. In the model, w1 ă w2 and φ1 ą φ2. Consequently,

group 1 consumers are subject to both high cyclical exposure and high MPC. The formal model

setup is contained in Online Appendix S6.

Denote the group-level consumption and saving as cg,t and sg,t, respectively.25 As shown in

Online Appendix S6, the group level consumption can be expressed as

cg,t “ p1´ βwgq
1

β
sg,t´1 ´ βwg

8
ÿ

j“0

pβwgq
jEg,trrt`js ` p1´ βwgqφg

8
ÿ

j“0

pβwgq
jEg,tryt`js (5.3)

25The lower case variable sg,t stands for the ratio between the group saving level Sg,t and the natural level of

output Y ˚ (i.e., sg,t “
Sg,t
Y ˚ ) as the steady state value of Sg,t is zero.
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where Eg,tr¨s is the average expectation of group g at time t, and rt is the unobserved (log) real

interest rate subject to exogenous shocks. Each individual i in either group g forms expectations

Ei,g;tr¨s conditional on a private, noisy signal on the real interest rate. The group level budget

constraint is

cg,t ` sg,t “
1

β
sg,t´1 ` φgyt (5.4)

and the market clearing condition requires

π1s1,t ` π2s2,t “ 0 (5.5)

The saving pair ps1,t, s2,tq defines the endogenous wealth distribution among groups in the econ-

omy. In the majority of their analysis, Angeletos and Huo (2021) impose a sequence of fiscal

transfers to undo any wealth inequality triggered by the interest rate shocks so that sg,t ” 0.

They then provide intuitions on why allowing endogenous wealth dynamics adds persistence to

the aggregate output in response to the interest rate shocks.

The HANK model serves three purposes. First, as a practical guide, we illustrate how to

introduce dummy variables to map the equilibrium condition (5.3), which involves an infinite

sum of expectations, into the canonical form. Infinite sums of expectations frequently appear

in incomplete-information models with an infinite number of agents and higher-order expecta-

tions. Second, we offer additional insight into the extra persistence due to endogenous wealth

distribution. Third, we illustrate the robustness of the results by introducing an asymmetric,

endogenous signal.

To begin with, define

xi,g;t “ βwgEi,g;t
8
ÿ

j“0

pβwgq
jrt`j, zi,g;t “ p1´ βwgqφgEi,g;t

8
ÿ

j“0

pβwgq
jyt`j

Since the law of iterated expectations applies to individual expectations Eg,tr¨s, Online Appendix

S6 shows we can rewrite the dummy variables xi,g;t, zi,g;t recursively as

xi,g;t “ βwgEi,g;t rrts ` βwgEi,g;t`1 rxi,g;t`1s (5.6)

zi,g;t “ p1´ βwgqφgEi,g;t ryts ` βwgEi,g;t`1 rzi,g;t`1s (5.7)

Using the two dummy variables, the equilibrium condition (5.3) can be expressed as

cg,t “ p1´ βwgq
1

β
sg,t´1 ´

ż

r0,1s

xi,g;tdi`

ż

r0,1s

zi,g;tdi (5.8)

One can then map (5.4)–(5.8) into the canonical form and solve the model using our toolbox.

31



0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 6: Impulse responses of aggregate output (left panel) and endogenous wealth (right panel) to
a negative real interest rate shock. The shock magnitude is normalized so that the full information
response of aggregate output on impact equals to 1. Parameter values follow Angeletos and Huo (2021).

Figure 6 plots the impulse responses of the aggregate output and the endogenous wealth

distribution to a negative real interest rate shock under both full and incomplete information.

Interestingly, while there is a significant distinction between the impulse responses of the aggre-

gate output (i.e., monotone vs. hump-shaped), the wealth distributions display similar patterns

between the full-information and the incomplete-information models. We also consider the case

of eliminating the endogenous wealth inequality. Consistent with Angeletos and Huo (2021), the

impulse responses of the aggregate output are much more persistent when the endogenous wealth

inequality is allowed under both full and incomplete information.

Online Appendix S6 shows that when the wealth inequality is allowed, the aggregate output

follows

yt “
1

1´ θ L

„

π1p1´ w1 Lq

ż

r0,1s

pzi,1;t ´ xi,1;tq di` π2p1´ w2 Lq

ż

r0,1s

pzi,2;t ´ xi,2;tq di



(5.9)

where θ “ π1φ1w1 ` π2φ2w2 ă 1. In contrast, when there is no wealth inequality, the aggregate

output is given by

yt “ π1

ż

r0,1s

pzi,1;t ´ xi,1;tq di` π2

ż

r0,1s

pzi,2;t ´ xi,2;tq di (5.10)

Without endogenous wealth, (5.10) defines the aggregate demand of the economy as a dynamic

network among the two groups of consumers. Comparing (5.9) with (5.10) indicates additional

autoregressive and moving-average terms arise when the wealth inequality is allowed, both of

which contribute to the higher persistence of the aggregate output.

We now enrich the HANK model by introducing a noisy private signal mi,g;t on the endogenous
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Figure 7: Impulse responses of aggregate output to a negative real interest rate shock. The shock
magnitude is normalized so that the full information response on impact equals to 1. Parameter values
other than σξ,g follow Angeletos and Huo (2021).

aggregate output yt.
26 The group-specific signal mi,g;t is of the form

mi,g;t “ yt ` ξi,g;t, ξi,g;t „ Np0, σ2
ξ,gq (5.11)

We assume only one group receives such a signal. While Angeletos and Huo (2021) mainly focus

on symmetric and exogenous information, we allow asymmetric and endogenous information,

and focus on how such an information setting impacts the aggregate output dynamics. Figure 7

plots the impulse responses of yt when either group 1 (left panel) or group 2 (right panel) receives

the endogenous signal mi,g;t. We vary σξ,g and consider an mi,g;t with a high, medium, and low

precision.27 Figure 7 also plots the two benchmark cases where both groups are equipped with

either full information or symmetric, exogenous information. All models considered in Figure 7

allow for endogenous wealth distribution.

Comparing the left and right panels of Figure 7 indicates that information asymmetry matters

in shaping the aggregate dynamics. Providing group 1 with a precise endogenous signal (i.e., low

σξ,1) yields a monotone impulse response that is quite similar to its full-information counterpart.28

In contrast, providing group 2 with the same signal (i.e., low σξ,2) generates a hump-shaped

impulse response. When the magnitude of σξ,2 is medium or high, the impulse responses are

26In the toolbox, we also include the customized solution code for the HANK model that does not rely on the
canonical form. In that example, we instead consider a noisy, group-specific aggregate signal. The discounted
infinite future sum of expectations can be handled directly by a separate routine. The results are similar.

27Let σf pytq denote the unconditional standard deviation of the aggregate output in the full-information
HANK model with endogenous saving. We pick low, medium, and high values of σξ,g such that σξ,g{σ

f pytq P
t0.01, 0.25, 1u.

28Increasing σξ,1 from low to medium value generates a pronounced hump-shaped response. Interestingly, the
impulse response under-shoots initially but then over-shoots its counterpart under full information. Angeletos,
Huo and Sastry (2020) emphasize a similar pattern found in surveys of macroeconomic expectations.
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indistinguishable from its incomplete-information counterpart with symmetric and exogenous

signals.

These results suggest the endogenous signal mi,2;t about the aggregate output yt does not

change the behavior of group 2 individuals much when it is not precise enough. In the extreme

case of φ2 “ 0 so that the income of group 2 individuals is not subject to business cycle fluctua-

tions, the last term in (5.3) vanishes and the group level consumption c2,t does not depend on yt

explicitly. The signal mi,2;t is still useful to group 2 individuals as it contains information about

the interest rate shock through yt. Nevertheless, such a signaling channel only manifests when

σξ,2 is small enough. When σξ,2 is relatively large, the pattern of the impulse responses in Figure

7 supports rational inattention of group 2 individuals.

On the other hand, group 1 individuals are subject to both high MPC and high cyclical

exposure. The combined features imply a volatile group level consumption c1,t. Such a positive

correlation between MPC and cyclical exposure also suggests group 1 individuals should pay

close attention to business cycle conditions if allowed. If we interpret the negative interest rate

shock as a result of an expansionary monetary policy and the existence of mi,1;t due to imperfect

central bank communication, Figure 7 suggests the monetary policy effects depend crucially on

(i) whether group 1 individuals are learning from mi,1;t, and (ii) whether the communication is

effective (i.e., a small σξ,1).

5.3 Beyond the Canonical Form and Baseline Algorithm

In the last example, we study an island-type stochastic growth model with dispersed information

in Graham and Wright (2010). This model features non-stationarity and multiple equilibria. We

go beyond the canonical form and demonstrate how the user can tailor a model-specific APFI

algorithm. There are a large number of islands in the economy. Identical households and firms live

on each island i, and are subject to unobservable aggregate and idiosyncratic productivity shocks

denoted as at and zit, respectively. Both shocks follow ARp1q processes. Households consume

a single good cit, supply labor nit to local firms, and save in terms of the physical capital kit.

Households lease capital at the rental rate rkt to firms on different islands in a centralized capital

market, while labor markets are segmented on each island (i.e., labor is immobile). Households

and firms on each island share dispersed information about the unobserved state of the economy

(i.e., aggregate and idiosyncratic productivity shocks and the aggregate capital). The information

set on each island contains two signals: (i) an island-specific wage signal that is informationally

equivalent to an exogenous signal as the sum of the aggregate and idiosyncratic productivity

shocks, i.e., swt “ at ` zit; (ii) the endogenous rental rate of capital rkt.

Under the parameter calibration in Graham and Wright (2010), the model’s equilibrium system

does not satisfy the invertibility condition in Assumption 4.1. On the other hand, the number of

signals in the model equals the number of unobserved exogenous shocks, and the (endogenous)
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capital rental rate signal displays confounding dynamics. As such, we solve and characterize the

closed-form equilibrium using the frequency-domain techniques similar to Rondina and Walker

(2018). The closed-form characterization shows that the full-information and the incomplete-

information models cannot be fully stationary. Two possible equilibria are stationary at the

aggregate level. The first equilibrium (Equilibrium 1) features a unit root in the idiosyncratic

consumption and capital. The second equilibrium (Equilibrium 2) features an explosive process

for the idiosyncratic capital. Graham and Wright (2010) focused on the exploration of Equi-

librium 1. We refer readers to Online Appendix S7 for the formal model setup and complete

characterization of the model solution.

The underlying irregularities impose substantial challenges to numerical computation. In this

regard, we reduce the model’s equilibrium system into a two-equation system.

$

&

%

cit “ Eit rcit`1 ´ p1´ βp1´ δqqrkt`1s

QpLqrkt “ PapLqat ´ PcpLqct
(5.12)

which consists of the individual Euler equation and a relation between the capital rental rate

and the aggregate consumption. The individual expectation is conditional on the information set

Xit “ trk,t´j, sw,t´j : j ě 0u. The PapLq, PcpLq, and QpLq defined in (S7.14)–(S7.16) of Online

Appendix S7 are first-order exogenous lag polynomials associated with the model’s primitive

parameters. Non-invertibility appears in the second equation of (5.12) as the roots of Qpzq

and Pcpzq are all inside the unit circle.29 Without further restrictions, a well-defined stationary

process for ct could lead to non-stationarity in rkt and vice versa. This problem is independent

of the model’s information structure and creates numerical instability in an iterative algorithm.

In Online Appendix S7 we discuss the origin and implications of the non-invertibility problem in

more details.

Motivated by this model’s theoretical and numerical irregularities, we develop three variants of

the baseline APFI algorithm beyond the canonical form. These algorithms are designed to solve

the system (5.12), which is sufficient to characterize the entire model solution. The first algorithm

(Algorithm 1) employs the signal representation of the solution to eliminate the non-invertibility

problem. For Equilibrium 1 with a random walk, we adopt a first-differencing strategy. The

second algorithm (Algorithm 2) expands conditional expectations using the Wiener-Hopf pre-

diction formula and iterates on the functions representing the endogenous signal along with its

Wold representation. The third algorithm (Algorithm 3) imposes a functional form restriction for

the solution and updates the iteration based on the Euler equation errors, ensuring stationarity

during the iteration process. In some of these extended APFI algorithms, we utilize knowledge

29If one of the roots of Qpzq and Pcpzq are outside the unit circle, then rearranging the order of variables could
eliminate the non-invertibility problem.
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Performance Extended APFI Time-Domain

Statistics Algorithm 1 Algorithm 2 Algorithm 3 Truncation

PI Equilibrium 1

Computation time 6.3691(s) 1.2587(s) N/A 0.3818(s)

Convergence criterion 10´6 10´6 N/A 10´5

Initial conjecture Generic Generic N/A Restrictive

PI Equilibrium 2

Computation time 21.6737(s) 0.8898(s) 531.4262(s) N/A

Convergence criterion 10´6 10´6 10´6 N/A

Initial conjecture Generic Generic Generic N/A

Table 2: Statistics of computation performance. N/A denotes the case where the algorithm is not applicable.
“Generic” initial conjecture means the initial function values can be set to simple guess, including 0, 1

p1´ρaqz
, ´z,

where ρa is the shock persistence. On the other hand, “restrictive” initial conjecture means the convergence and
stability of the algorithm are highly sensitive to the initial guess.

about the theoretical properties of the model’s equilibrium to impose restrictions on the solu-

tion form and the functional constants associated with agents’ conditional expectations. Such

prior knowledge includes the stationarity property of the two equilibria and the structure of the

full-information solution.30

We conducted a comparison exercise using our APFI algorithms and the time-domain trunca-

tion algorithm used in Graham and Wright (2010).31 In contrast to the time-domain method,

we find that the extended APFI algorithms are, in general, slower but more accurate and robust

to initial conjectures. Unlike the time-domain approach, our APFI algorithms can also compute

different types of equilibria that this model admits. We summarize the computation performance

of these algorithms in Table 2. The performance statistics include computing time (in seconds),

convergence criterion, and initial conjecture. We report the statistics for the computation of two

incomplete-information (PI) equilibria: Equilibrium 1 and Equilibrium 2. We also report the

statistics for the time-domain truncation method of Nimark (2017) that is used in Graham and

Wright (2010).32

30If there is no unit root in the system, Algorithm 1 based on the signal representation requires no additional
restrictions. See Algorithm S7.8 in Online Appendix S7.

31We are grateful to Liam Graham and Stephen Wright for sharing their original code with us for completing
this exercise.

32The numerical experiment is conducted on a laptop with Intel R© CoreTM i5-4600U CPU (2 cores, 4 threads),
2.40GHz, RAM 8.00Gb. We run the code on Matlab R2019b platform using individual routines contained in our
toolbox. For each statistic, we run the algorithm ten times and calculate the average performance. We use the
same parameter setting as in Graham and Wright (2010) except that we set the steady-state growth rate to g “ 0
in each algorithm. However, all results remain valid when we set g ą 0. In the toolbox, we also include the code
for solving the full-information equilibrium, and its numerical performance is similar to the PI case.
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Figure 8: Comparison of frequency-domain and time-domain numerical solutions with closed-form so-
lution under incomplete information.

As Table 2 suggests, the APFI algorithms turn out to be slower than the time-domain trun-

cation method. This is not surprising considering the amount of algebra involved in the latter

approach. The APFI algorithms, on the other hand, entail a series of intermediate steps (e.g.,

finding the rational approximation, computing the Wold spectral factorization, and evaluating

the annihilation operator), which are performed by the individual routines in our toolbox. Among

all, Algorithm 3 requires the most significant amount of algebraic work and hence is the slowest.

However, various options can be applied to improve the speed of our APFI algorithms further,

including reducing the grid points on the state space, adopting more delicate initial guesses,

reducing the number of points for the discrete Fourier transform, and reducing the orders of

VARMApp, qq approximation. In Online Appendix S7 we provide some helpful coding pointers

that guide these implementation details.

Compared to the performance on speed, we believe the accuracy, stability, and flexibility of an

algorithm are equally important. In these regards, the APFI algorithms demonstrate superior

advantages. The left panel of Figure 8 plots the impulse response of the aggregate consumption

in PI Equilibrium 1 under different APFI algorithms, the closed-form solution, and that under

the time-domain algorithm. The APFI algorithms lead to a highly accurate solution virtually

identical to the true solution. On the other hand, the time-domain algorithm used by Graham

and Wright (2010) yields a substantial numerical error, which remains large even if we increase

the order of higher-order expectations in the state space. In addition, we identify and compute

the PI Equilibrium 2, which displays a qualitatively similar solution. Quantitatively, the two

equilibria are sufficiently different. The right panel of Figure 8 plots the impulse response of

the aggregate consumption in Equilibrium 2 under the APFI algorithms and the true solution.

Again, our algorithms demonstrate superb accuracy. Finally, all three APFI algorithms are

robust to different initial conjectures as generic initial guesses lead to stable convergence. This
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robustness is in sharp contrast to the time-domain approach, whose convergence is sensitive to

the initial guess.33

The dynamic responses in Figure 8 demonstrate high persistence even when the shock persis-

tence is only moderate (0.9). The impulse response sequences (i.e., MAp8q coefficients of the

solution) do not vanish even after 100 periods. This observation implies that the MA truncation

methods such as in Lorenzoni (2009) and more recently in Adams (2021) may become less effi-

cient as the required truncation length and the number of unknown coefficients that need to be

solved are enormous.

6 Concluding Remarks

We have developed a unified framework for solving and analyzing dynamic macroeconomic and

finance models of incomplete information. In particular, we propose a policy function iteration

method based on the frequency-domain techniques and provide a handy numerical toolbox that

implements our method. We also demonstrate the applicability and flexibility of this framework

using several economic examples. We believe the tools developed in this paper can be useful in

addressing many potential research questions. Extending our methodology to continuous-time

models or even to nonlinear models will also be important future directions.
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Appendix

Proof of Theorems

This section presents the proof of three theorems in the main text.

Proof of Theorem 3.1

We start with a subset of
Ť

p,q PN Qpp,qq that corresponds to VARMApk, k ´ 1q processes. In

particular, define the set of nxˆnε matrices of proper rational analytic functions that correspond

to VARMApk, k ´ 1q processes as Rk, where each element of Rk is of the form

R
pm,nq
k :“

#

cpm,nq
śk´1

j“1p1´ b
pm,nq
j zq

śk
i“1p1´ a

pm,nq
i zq

: a
pm,nq
i , b

pm,nq
j , cpm,nq P C, |apm,nqi | ă 1, @i, j

+

for m “ 1, 2, . . . , nx and n “ 1, 2, . . . , nε. We will first show that
Ť

kPN Rk is dense in the normed

vector space H2
nxˆnεpDq and then extend the result to

Ť

kPN Qk.

By definition,
Ť

kPN Rk is dense in the normed vector space H2
nxˆnεpDq if for any ε ą 0 and

any matrix Kpzq P H2
nxˆnεpDq, there exists an element Jpzq P

Ť

kPN Rk such that

}Kpzq ´ Jpzq}H2
nxˆnε

“

¨

˝

1

2πi

¿

T

tr
 

rKpzq ´ Jpzqs rKpzq ´ Jpzqs˚
( dz

z

˛

‚

1{2

ď ε

where ˚ denotes conjugate transpose, and trp¨q is the matrix trace operator. We proceed the

proof in three steps.

Step 1: We first show that each matrix element,
Ť

kPN R
pm,nq
k , is dense in H2pDq. Fix an

element pm,nq, the proof of this step is constructive. Consider a sequence of complex numbers

tθku
8

k“0 on the open unit disk D such that limkÑ8 |θk| “ 0. It is immediate that

8
ÿ

k“0

p1´ |θk|q “ 8 (1)

Then we apply the Gram-Schmidt procedure to construct an orthonormal basis in the Hilbert

space H2pDq. In particular, consider a set of functions tHkpzqukPN given by

Hkpzq “
1

1´ θkz
, k P N
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The first element can be normalized as

B0pzq “
H0pzq

‖H0pzq‖
“

a

1´ |θ0|
2

1´ θ0z

which simply characterizes an ARp1q process with unit variance (or norm). Next, we recursively

define

Wkpzq “ Hkpzq ´
k´1
ÿ

h“0

ă Hkpzq,Bhpzq ą Bhpzq, Bkpzq “
Wkpzq

‖Wkpzq‖

where the inner product is defined as

ă Hkpzq,Bhpzq ą“
1

2π

ż π

´π

Hkpe
´iω
qBhpe´iωqdω

Note that the choice of tBkpzqukPN is not unique, provided the underlying ARMA process is not

too persistent (i.e., θk is not too close to unity).

The above recursion yields the following formula for tBnpzqunPN

Bkpzq “

˜

a

1´ |θk|2

1´ θkz

¸

k´1
ź

h“0

z ´ θh
1´ θhz

, k P N (2)

By inspection, it is easy to see that Bkpzq P R
pm.nq
k for all k P N. Thus,

span ptBkpzqukPNq Ď
ď

kPN

R
pm,nq
k (3)

as
Ť

kPN R
pm.nq
k is a linear subspace of H2pDq that is closed under finitely many linear combina-

tions.

Therefore, (3) implies that it suffices to show span ptBkpzqukPNq is dense in H2pDq. Basic

Hilbert space theory ensures that span ptBkpzqukPNq is dense if and only if there is no function

fpzq ‰ 0 in H2pDq such that ă fpzq, gpzq ą“ 0 for all gpzq P span ptBkpzqukPNq. We prove this

statement by contradiction. Suppose there exists fpzq ‰ 0 such that it is orthogonal to every

element in span ptBkpzqukPNq. Then we can have

ă fpzq,B0pzq ą“
1

2πi

¿

T

fpzqB0pzq
dz

z
“

1

2πi

¿

T

fpzq
´

a

1´ |θ0|
2
¯ z

z ´ θ0

dz

z
“ 0 (4)

By Morera’s Theorem and Cauchy Integral Theorem, (4) holds if and only if fpzq has a zero

at z “ θ0. Continuing this argument, we know that fpzq has zeros at a sequence of points
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θk
(8

k“0
inside the unit circle. Since fpzq is analytic inside the unit circle, by Theorem 2.3 and

its corollary of Duren (2000), we have fpzq P H2pDq if and only if

8
ÿ

k“0

`

1´ |θk|
˘

“

8
ÿ

k“0

p1´ |θk|q ă 8

which leads to an immediate contradiction to (1). Therefore, span ptBkpzqukPNq and hence
Ť

kPN R
pm,nq
k are dense in H2pDq. Since our choice of pm,nq is arbitrary, the argument extends to

all elements of the matrices in the set
Ť

kPN Rk.

Step 2: Given step 1, the second step is straightforward. Fix a Kpzq P H2
nxˆnεpDq and ε ą 0.

For each m “ 1, 2, ...nx and n “ 1, 2, ...nε, pick a function gpm,nqpzq P
Ť

kPN R
pm,nq
k such that

›

›gpm,nqpzq ´Kpm,nq
pzq

›

›

H2 ď
ε

nxnε
.

This can be done by the denseness proved in step 1. Define Jpzq such that J pm,nqpzq “

gpm.nqpzq, @m,n. Then it follows that

¨

˝

1

2πi

¿

T

tr
 

rKpzq ´ Jpzqs rKpzq ´ Jpzqs˚
( dz

z

˛

‚

1{2

“

¨

˝

1

2πi

¿

T

nx
ÿ

m“1

nε
ÿ

n“1

ˇ

ˇ

ˇ

ˇ

J pm,nqpzq ´Kpm,nq
pzq

ˇ

ˇ

ˇ

ˇ

2
dz

z

˛

‚

1{2

“

¨

˝

nx
ÿ

m“1

nε
ÿ

n“1

1

2πi

¿

T

ˇ

ˇ

ˇ

ˇ

J pm,nqpzq ´Kpm,nq
pzq

ˇ

ˇ

ˇ

ˇ

2
dz

z

˛

‚

1{2

“

˜

nx
ÿ

m“1

nε
ÿ

n“1

›

›J pm,nqpzq ´Kpm,nq
pzq

›

›

2

H2

¸1{2

ď

nx
ÿ

m“1

nε
ÿ

n“1

b

}J pm,nqpzq ´Kpm,nqpzq}
2
H2

ď
ε

nxnε
pnxnεq

“ ε

where the first inequality comes from the classical arithmetic inequality.

Step 3: By definition,
Ť

kPN Rk Ă
Ť

p,q PN Qpp,qq. Therefore,
Ť

p,q PN Qpp,qq is dense in H2
nxˆnεpDq.

1

The proof is then complete.

Proof of Theorem 3.2

We break the proof of the theorem in three parts.

1In fact, any VARMApp, qq process can be written as a VARMApk, k ´ 1q process by setting the appropriate
coefficient matrices to zero. The refinement of the basis functions to VARMApk, k ´ 1q processes is needed for
models whose solution forms are restricted in order to integrate our APFI method with other algorithms. See the
rational inattention example of Miao, Wu and Young (2021a).
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Part 1: First, we notice that D is open, connected sets in the complex domain such that

U “ p´1, 1q Ă D is open. By definition, Ψypzq is analytic in D; therefore, Ψypzq is the unique

analytic continuation of Ψypzq, z P U to the entire open unit disk.

Next, we rewrite (3.12) as

A0Ψy
pzq “ T pΨy

pzqq , z P U “ p´1, 1q, (5)

where T ” ´
řl
k“1Akz

kΨypzq ´
řh
k“0 BkFkpΨ

ypzqqΨΩpzq. The first part of T is analytic and
›

›zkΨypzq
›

›

H2 “ }Ψypzq}H2 , since zk is merely the shift operator. The Wiener-Hopf operator is

defined as

FkpΨ
y
pzqq “

„

z´kΨy
pzqΣεΓ

Ω
`

z´1
˘1
´

rΓΩ
`

z´1
˘1
¯´1



`

Σ´1
u
rΓΩ
pzq´1

It is easy to show that the annihilation operator r¨s
`

is linear and the resulting function is analytic

in D (see e.g. Hansen and Sargent (1980) and the proof of the next theorem). The fundamental

spectral factor rΓΩpzq´1 is also analytic in D by invertibility. Hence, FkpΨ
ypzqq and T pΨypzqq

are analytic functions in the entire open unit disk since analyticity is preserved under sum and

product.

Since both the LHS and RHS of (5) are analytic functions in D and (5) holds in the open

subset U Ă D, we have

A0Ψy
pzq “ T pΨy

pzqq , z P D, (6)

by the uniqueness of analytic continuation (Rudin (1987), Corollary of Theorem 10.18) . More-

over, A0Ψypzq and T pΨypzqq have the same unique Laurent series expansion in the annulus

0 ď |z| ă 1 (i.e., D). Since Ψypzq P H2
p2nx`nsqˆnε

pDq, by the Riesze-Fischner theorem the Laurent

series are square–summable (Theorem 17.12 of Rudin (1987)). Therefore, the MA(8) represen-

tation ΨxpLq “
ř8

n“0 Ψx
n Ln is a covariance-stationary equilibrium for model (3.1).

Part 2: The statement is standard implication of the uniqueness of the analytic continuation

and hence proof is omitted.

Part 3: The proof on the convergence criteria is much more involved since analytic continu-

ation does not extend to limit in general. Therefore we adopt a different approach that requires

some results in complex analysis. Let (Cnxˆnε , || ¨ ||hs) denote the set of nx ˆ nε dimensional

complex matrices equipped with the Hilbert-Schmidt matrix norm, which is the underlying field

for matrix functions tΓxnpzqunPN. Since every finite dimensional normed vector space is Banach

and satisfies the Heine-Borel theorem, it induces a complete metric space denoted by (Cgˆk,

dhs).
2 Clearly, || ¨ ||hs is a matrix generalization of the univariate modulus | ¨ |.

2We pick the (Euclidean) H-S norm for convenience as all norms on Cgˆk are equivalent.
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Step 1: First, note the each element in sequence tΓxnpzqunPN P H2
nxˆnεpDq is rational. There-

fore, by Theorem S1.4, they have no poles (and are analytic) on the closed unit disk T
Ť

D.

Moreover, they are bounded analytic functions in the sense

sup
zPD
}Γxnpzq}hs ď sup

|z|“1

}Γxnpzq}hs “Mn ă 8, @n P N

for some Mn ą 0. The first inequality follows from the Maximum Modulus Principle. Therefore,

tΓxnpzqunPN P H8
nxˆnεpDq. Define M “ supnPNtMnu ă 8. Then it is clear that the sequence

tΓxnpzqunPN is uniformly bounded on every compact subsets of D, i.e., for every compact set

G Ă D and for all Γxnpzq and z P G, we have

}Γxnpzq}hs ďM, n P N

Step 2: Next, we state the following lemma which is crucial for our proof.

Lemma 1 (Vitali). Let fn be a sequence of analytic functions on a domain D that is uniformly

bounded on each compact subset of D. Then the functions fn converge to f uniformly on compact

subsets of D if and only if there is a set of points A, such that A has a point of accumulation in

D and fn converge pointwise on A.

The proof of this theorem uses the celebrated Montel’s theorem and can be found in Beliaev

(2019), Theorem 2.11.3 Now let D “ D and A “ U, it is clear that tΓxnpzqunPN converges

uniformly to Γxpzq on each compact subset of D.

Step 3: We prove the statement limnÑ8 }Γ
xpzq ´ Γxnpzq}H2 “ 0. Consider a family of compact

sets tD̄ru0ďră1, where D̄r denotes the closed disk centered at the origin, with radius 0 ď r ă 1.

Fix a r and ε ą 0. Then we can pick n0 P N such that for all n ě n0,

sup
zPD̄r

}Γxpzq ´ Γxnpzq}ds ă ε

by the uniform convergence property. Now pick m,n ě n0, and define a family of parameterized

integral operator ∆pΓxnpzq ´ Γxmpzq, rq indexed by r such that

∆pΓxnpzq ´ Γxmpzq, rq “

"

1

2π

ż π

´π

tr

"„

Γxnpre
it
q ´ Γxmpre

it
q

„

Γxnpre
it
q ´ Γxmpre

it
q

˚*

dt

*
1
2

ď

"

1

2π

ż π

´π

ˇ

ˇ

ˇ

ˇ

sup
zPD̄r

}Γxmpzq ´ Γxnpzq}ds

ˇ

ˇ

ˇ

ˇ

2

dt

*
1
2

“ sup
zPD̄r

}Γxmpzq ´ Γxnpzq}ds

3For more background details on the Montel space of analytic functions, we refer readers to Chapter VII of
Conway (1978) and Chapter 2 of Beliaev (2019).
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where the first inequality follows form the monotonicity of the Lebesgue integrals and the fact

that supzPD̄r }Γ
x
mpzq ´ Γxnpzq}hs is a constant function. Using the triangle inequality and the

property of supremum

∆pΓxnpzq ´ Γxmpzq, rq ď sup
zPD̄r

}Γxmpzq ´ Γxnpzq}ds

“ sup
zPD̄r

}Γxmpzq ´ Γxpzq ` Γxpzq ´ Γxnpzq}hs

ď sup
zPD̄r

}Γxmpzq ´ Γxpzq}hs ` sup
zPD̄r

}Γxpzq ´ Γxnpzq}hs (7)

Note that (7) holds for all m,n ě n0. Now take the limit mÑ 8,

lim
mÑ8

∆pΓxnpzq ´ Γxmpzq, rq “ ∆pΓxnpzq ´ lim
mÑ8

Γxmpzq, rq

ď lim
mÑ8

sup
zPD̄r

}Γxmpzq ´ Γxpzq}hs ` lim
mÑ8

sup
zPD̄r

}Γxpzq ´ Γxnpzq}hs (8)

where the first equality interchanges the integration with limit under uniform convergence. By

Lemma A.1, the first term on the RHS of the inequality vanishes; hence, (8) implies that

∆pΓxnpzq ´ Γxpzq, rq ď sup
zPD̄r

}Γxpzq ´ Γxnpzq}hs ă ε (9)

Since (9) holds for all 0 ď r ă 1, we take take the radial limit r Ñ 1,

lim
rÑ1

∆pΓxnpzq ´ Γxpzq, rq “ }Γxnpzq ´ Γxpzq}H2 ă ε

where the first equality follows from Remark 17.8 of Rudin (1987). Now since our choices of n0

and n are arbitrary, we have proven the statement:

lim
nÑ8

}Γxpzq ´ Γxnpzq}H2 “ 0

By the Cauchy completeness of H2 space, we know that Γxpzq P H2
nxˆnεpDq. Our proof is now

complete.

Proof of Theorem 3.3

First, consider the conditional expectation x̂t`k “ Erxt`k|Ωts in its innovation representation

x̂t`k “
8
ÿ

k“0

Hk Lk Ωt “ HpLqrΓΩ
pLqut (10)
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By covariance-stationarity, HpzqrΓΩpzq P H2pDq. Since rΓΩpzq is an outer (i.e., invertible) function,

it follows that Hpzq is analytic on D by the properties of analytic functions.4

Next, we derive the region of convergence (ROC) for Θpzq through the construction of the

Wiener-Hopf filter. In particular, we show such ROC contains the unit circle T under our

assumptions. Note that the optimal filter satisfies the following orthogonality condition

E rpxt`k ´ x̂t`kqΩt´js “ 0, @k, j P N (11)

in the inner-product space of random variables. Substitute (10) into (11) to obtain

RxΩpk ` jq “
8
ÿ

i“0

HiRΩpj ´ iq, @k, j P N (12)

where RxΩp¨q and RΩp¨q are cross and auto-covariance functions, respectively. Since Γxpzq and

ΓΩpzq are rational analytic functions on T by Theorem S1.4, the implied covariance generating

functions

SxΩpzq “ ΓxpzqΣεΓ
Ω
`

z´1
˘1
“

8
ÿ

k“´8

RxΩpkqz
k (13)

SΩpzq “ ΓΩ
pzqΣεΓ

Ω
`

z´1
˘1
“

8
ÿ

k“´8

RΩpkqz
k (14)

are rational with the property that
ř8

k“´8 |RxΩpkq| ă 8 and
ř8

k“´8 |RΩpkq| ă 8. Geometri-

cally, these functions possess a finite number of poles located inside and outside the unit circle,

which are determined by Γxpzq and ΓΩpzq. Then we can pick a small ε ą 0 such that within the

annulus A1 “ tz : |1 ´ ε| ă |z| ă 1{|1 ´ ε|u, (13) and (14) converge and hence are well-defined.

This procedure can simply be done by taking the intersection of the ROCs for SxΩpzq and SΩpzq

that contain the unit circle.

Now define a sequence tGju
8

j“´8 by

Gj “ RxΩpk ` jq ´
8
ÿ

i“0

HiRΩpj ´ iq, @k P N, j P Z (15)

By (12), Gj “ 0 for j ě 0. We can also extend the sequence tHiu
8
i“0 by letting Hi “ 0 for i ă 0.

Then taking the two-sided z-transform on both sides of (15), we can obtain

Gpzq “ z´kSxΩpzq ´HpzqSΩpzq (16)

4The Hardy space, however, is not closed under multiplication.
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where we have applied the convolution theorem of z-transform. (16) is well-defined in the region

A2 “ A1

Ş

D “ tz : |1 ´ ε| ă |z| ă 1u. Using the canonical spectral factorization SΩpzq “
rΓΩpzqrΓΩpz

´1q1, we can rewrite (16) as

Gpzq
´

rΓΩpz
´1
q
1
¯´1

“ z´kSxΩpzq
´

rΓΩpz
´1
q
1
¯´1

´HpzqrΓΩpzq

Within the region A2, Gpzq
´

rΓΩpz
´1q1

¯´1

has only negative power terms by the invertibility of

the fundamental spectral factor, while HpzqrΓΩpzq has only positive power terms. Therefore,

taking the annihilation r¨s
`

of the above equation yields

0 “

„

z´kSxΩpzq
´

rΓΩpz
´1
q
1
¯´1



`

´HpzqrΓΩpzq

which gives the Wiener-Hopf optimal prediction formula

Hpzq “ rΘpzqs
`
rΓΩpzq

´1

By construction Θpzq is rational. Moreover, it does not have any pole on the unit circle. In

other words, Θpzq has the same Laurent series expansion in the region A3 “ tz : |1´ε| ă |z| ď 1u

as in A2. Therefore, we can apply the inverse discrete time Fourier transform to compute the

coefficients of positive power terms. Finally, since Θpzq is a rational analytic function on T,

Θpzq P L2pTq and its inverse Fourier coefficients are absolutely-summable (and hence square-

summable). The approximation accuracy follows directly from Theorem S1.3.

Properties of the Baseline Algorithm

Proposition 2 (Boundedness). Suppose Assumption 4.1 holds for the simplified model system

(4.1), where the expectational block is associated with either (i) a particular information set

Ωt (I.0) or (ii) information structure I.1, and the structural innovations are orthonormal, i.e.,

Σε “ I. Then A : H2
nxˆnεpDq ÞÑ H2

nxˆnεpDq is a nonlinear, locally bounded operator that maps a

bounded subset of H2
nxˆnεpDq to another bounded subset. If in addition,

h
ÿ

k“0

||Axpzq´1Bk||H8 “

h
ÿ

k“0

sup
|z|“1

σmax

`

Axpzq´1Bk

˘

ă 1 (17)

where H8 is defined in the space of (essentially) bounded analytic functions and σmax refers to

the largest singular value of the matrix. Then for any given initial conjecture Γx0pzq, the sequence

tΓxnpzqu
8
n“0 induced by A is bounded (non-explosive).
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The H8 norm is used extensively in the signal processing and control theory literature and

can be computed conveniently in MATLAB. The assumption of orthonormality is not restrictive

because the fixed point conditions (4.1) and (4.2) can always be rewritten in terms of orthonormal

innovations. Specifically, if we perform the (unitary) eigen-decomposition for Σε “ UDU
1

with

U being unitary and D being diagonal and multiply the structural innovations in Γspzq, Γypzq,

and ΓΩpzq by M “ U
?
D, then the fixed point condition can be defined in terms of orthonormal

innovations. The solution Γxpzq to the normalized system is equivalent to the solution with

respect to the original structural innovations up to a transformation by M´1.

Proof of Proposition 2

We first consider the case where the expectational block contains a particular information set

Ωt. Expanding (4.2) to obtain

Γxpzq “ A pΓxpzqq ” ´Axpzq´1AspzqΓspzq ´ Axpzq´1

˜

h
ÿ

k“0

Bx
kFkpΓ

x
pzqqΓΩ

pzq `Bs
kFkpΓ

s
pzqqΓΩ

pzq

¸

(18)

By Assumption 4.1, Axpzq´1 is a rational, bounded analytic function in H8
nxˆnx . By Conway

(1990, p. 28, Theorem 1.5) and Lindquist and Picci (2015, Theorem 4.3.3 (Bochner-Chandrasekharan)

and Proposition B.2.4), the left multiplication by Axpzq´1 defines a bounded, linear operator in

H2
nxˆnε with operator norm

ˇ

ˇ

ˇ

ˇAxpzq´1
ˇ

ˇ

ˇ

ˇ

op
“
ˇ

ˇ

ˇ

ˇAxpzq´1
ˇ

ˇ

ˇ

ˇ

H8
“ sup
|z|“1

σmax

`

Axpzq´1
˘

Now consider a bounded set in H2
nxˆnεpDq and an element Γxpzq in it. It follows that

ˇ

ˇ

ˇ

ˇA pΓxpzqq
ˇ

ˇ

ˇ

ˇ

H2 ď
ˇ

ˇ

ˇ

ˇAxpzq´1AspzqΓspzq
ˇ

ˇ

ˇ

ˇ

H2 `

h
ÿ

k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bx
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇFkpΓ
x
pzqqΓΩ

pzq
ˇ

ˇ

ˇ

ˇ

H2

`

h
ÿ

k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bs
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇFkpΓ
s
pzqqΓΩ

pzq
ˇ

ˇ

ˇ

ˇ

H2

where we have used the triangular inequality and the bounded linear operators defined by

Axpzq´1Bx
k and Axpzq´1Bs

k, k “ 0, 1, . . . , h. The first term on the right hand side is purely

exogenous and bounded. Without loss of generality, let N “
ˇ

ˇ

ˇ

ˇAxpzq´1AspzqΓspzq
ˇ

ˇ

ˇ

ˇ

H2 . Define

W pΓxpzqq “ F0pΓ
xpzqqΓΩpzq, which is associated with the innovation representation for the con-

ditional expectation of the vector-valued process xt. By the spectral theory of time series, the
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covariance matrix of Etxt is given by the inverse Fourier transform of the spectral density5

ΣEx “
1

2π

ż π

´π

fExpωqdω “
1

2π

ż π

´π

W pωqW ˚
pωqdω

Taking the trace operator on both sides of the equation leads to the sum of variances

trpΣExq “
1

2π

ż π

´π

tr pW pωqW ˚
pωqq dω ď trpΣxq “

1

2π

ż π

´π

tr pΓxpωqΓx,˚pωqq dω (19)

where Σx is the covariance matrix of xt, and the inequality follows from the variance bounds of

higher-order expectations. That is, for the entire vector of model variables yt, we have

varpEpkqt pytqq ď varpEpk´1q

t pytqq ď . . . ď varpEp1qt pytqq ď varpEtpytqq ď varpytq, @k P N (20)

where Epkqt pytq denotes the k-th order average expectation over the entire economy. ď is defined

as entry-wise inequality over vectors. The last inequality follows from the orthogonality condition

of individual conditional expectations, and the remaining inequalities follow from the fact that

idiosyncratic shocks vanish due to the law of large numbers.

Since xt is covariance-stationary, the inequality in (19) applies to expectations of future real-

izations tL´kxtu
h
k“1. Taking square roots on both sides of the inequality in (19), we obtain the

norm inequality:
ˇ

ˇ

ˇ

ˇFkpΓ
xpzqqΓΩpzq

ˇ

ˇ

ˇ

ˇ

H2 ď
ˇ

ˇ

ˇ

ˇΓxpzq
ˇ

ˇ

ˇ

ˇ

H2 , k “ 0, 1, . . . , h. A similar argument shows

that
ˇ

ˇ

ˇ

ˇFkpΓ
spzqqΓΩpzq

ˇ

ˇ

ˇ

ˇ

H2 ď
ˇ

ˇ

ˇ

ˇΓspzq
ˇ

ˇ

ˇ

ˇ

H2 , k “ 0, 1, . . . , h. Therefore,

ˇ

ˇ

ˇ

ˇA pΓxpzqq
ˇ

ˇ

ˇ

ˇ

H2 ď N `
h
ÿ

k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bx
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇΓxpzq
ˇ

ˇ

ˇ

ˇ

H2 `

h
ÿ

k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bs
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇΓspzq
ˇ

ˇ

ˇ

ˇ

H2

is bounded. The last component in the inequality is again exogenous, and we define R “
řh
k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bs
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇΓspzq
ˇ

ˇ

ˇ

ˇ

H2 .

Next, we notice that
ˇ

ˇ

ˇ

ˇAxpzq´1Bx
k

ˇ

ˇ

ˇ

ˇ

op
ď ||Axpzq´1Bk||op since the maximum singular value of the

sub-matrix is bounded by the original matrix for every |z| “ 1 and k “ 0, 1, . . . , h. Therefore, if

(17) holds, let α ”
řh
k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bx
k

ˇ

ˇ

ˇ

ˇ

op
ă 1. Now take an initial conjecture Γx0pzq. The sequence

tΓxnpzqu
8
n“0 induced by A admits the bound

ˇ

ˇ

ˇ

ˇΓxnpzq
ˇ

ˇ

ˇ

ˇ

H2 “
ˇ

ˇ

ˇ

ˇA
`

Γxn´1pzq
˘
ˇ

ˇ

ˇ

ˇ

H2 ď

n´1
ÿ

k“0

αkpN `Rq ` αn
ˇ

ˇ

ˇ

ˇΓx0pzq
ˇ

ˇ

ˇ

ˇ

H2

Since α P p0, 1q, R ą 0, and N ą 0, the sequence tΓxnpzqu
8
n“0 is bounded above by 1

1´α
pN `

5By Rozanov (1967, Sec 1.9), the processes xt and Etxt have absolutely continuous spectral measures with
well-defined spectral densities.
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Rq `
ˇ

ˇ

ˇ

ˇΓx0pzq
ˇ

ˇ

ˇ

ˇ

H2 . Under the more general information structure I.1, elements in tBku
h
k“0 is

allowed to be associated with expectations conditional on distinct information sets. However, for

each information set, the variance bound inequalities (19) and (20) still hold. Therefore, using

the representation (3.3) it is easy to show that the results we have proved remain valid. This

completes the proof.

Proposition 3 (Contraction Mapping). Suppose the information structure is exogenous and

the assumptions in Proposition 2 hold (in particular, condition (17)). Then A is a contraction

mapping and there exists a unique fixed point for the simplified model system (4.1).

Proof of Proposition 3

We first consider the case where the expectational block contains only one information set Ωt.

When information is exogenous, by the Wiener-Hopf prediction formula (3.7) and the variance

bound inequality (19), FkpΓ
xpzqqΓΩpzq defines a linear bounded operator for k “ 0, 1, 2, ...h. The

linearity follows from the fact that the annihilation operator r¨s` is linear and that information

is purely exogenous. Next, we show that under (17), A is a contraction. Take two functions fpzq

and gpzq in the space H2
nxˆnεpDq. By (18),

Apf ´ gqpzq “ Axpzq´1

˜

h
ÿ

k“0

Bx
kFkpgpzqqΓ

Ω
pzq ´

h
ÿ

k“0

Bx
kFkpfpzqqΓ

Ω
pzq

¸

“ Axpzq´1

˜

h
ÿ

k“0

Bx
kFkpgpzq ´ fpzqqΓ

Ω
pzq

¸

where the terms associated with exogenous shocks and their expectations drop out due to ex-

ogenous information. The second equality comes from the linearity of the expectation operator.

Then it follows that

ˇ

ˇ

ˇ

ˇApf ´ gqpzq
ˇ

ˇ

ˇ

ˇ

H2 ď

h
ÿ

k“0

ˇ

ˇ

ˇ

ˇAxpzq´1Bx
k

ˇ

ˇ

ˇ

ˇ

op

ˇ

ˇ

ˇ

ˇpf ´ gqpzq
ˇ

ˇ

ˇ

ˇ

H2 “ α
ˇ

ˇ

ˇ

ˇpf ´ gqpzq
ˇ

ˇ

ˇ

ˇ

H2

where α P p0, 1q is defined in the proof of Proposition 2. Therefore, A is a contraction and there

is a unique fixed point for (4.1). Using the representation (3.3), the proof for more general types

of information structure is similar and hence omitted.
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