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Abstract
Presently there is growing interest in dynamic stochastic general equilibrium

(DSGE) models with more parameters, endogenous variables, exogenous shocks,

and observable variables than the Smets and Wouters (Am Econ Rev

97(3):586–606, 2007) model, and the incorporation of non-Gaussian distribution

and time-varying volatility. A primary goal of this paper is to introduce a user-

friendly MATLAB toolkit designed to reliably estimate such high-dimensional

models. It simulates the posterior distribution by the tailored random block

Metropolis-Hastings (TaRB-MH) algorithm of Chib and Ramamurthy (J Econom

155(1):19–38, 2010), calculates the marginal likelihood by the method of Chib (J

Am Stat Assoc 90:1313–1312, 1995) and Chib and Jeliazkov (J Am Stat Assoc

96(453):270–281, 2001), and includes various post-estimation tools that are

important for policy analysis, for example, functions for generating point and

density forecasts. We also introduce two novel features, i.e., tailoring-at-random-

frequency and parallel computing, to boost the overall computational efficiency.

Another goal is to provide pointers on the prior, estimation, and comparison of these

DSGE models. To demonstrate the performance of our toolkit, we apply it to

estimate an extended version of the new Keynesian model of Leeper et al (Am

Econom Rev 107(8):2409–2454, 2017) that has 51 parameters, 21 endogenous

variables, 8 exogenous shocks, 8 observable variables, and 1494 non-Gaussian and

nonlinear latent variables.
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1 Introduction

Over the past 20 years or so, dynamic stochastic general equilibrium (DSGE)

models have become the mainstay of macroeconomic policy analysis and

forecasting. Presently there is growing interest in DSGE models with more

parameters, endogenous variables, exogenous shocks, and observable variables than

the Smets and Wouters (2007) model, and the incorporation of non-Gaussian

distribution, as in Chib and Ramamurthy (2014) and Cúrdia et al. (2014), and time-

varying volatility, as in Justiniano and Primiceri (2008).1 This is because these

higher-dimensional DSGE models are more realistic and have the potential to

provide better statistical fit to the data. Despite wide spread use of Bayesian

estimation techniques, based on Markov chain Monte Carlo (MCMC) simulation

methods [see Chib and Greenberg (1995b) and Herbst and Schorfheide (2016) for

further details about these methods], the estimation of high-dimensional DSGE

models is challenging. The popular DYNARE software, which has proved useful for

small and medium-scale models is, however, currently not capable of handling the

preceding DSGE models, thus inhibiting the formulation, estimation, and compar-

ison of such models for policy analysis and prediction.

A primary goal of this paper is to introduce a user-friendly MATLAB toolkit for

estimating high-dimensional DSGE models with stochastic volatility (SV) and

Student-t shocks. Outside of the DSGE context, SV-Student-t models were first

studied by Chib et al. (2002) and applied to financial data, then by Cúrdia et al.

(2014) with applications to macroeconomic time series. Incorporating SV-Student-

t shocks in DSGE models, however, introduces new challenges because of the

complex mapping from the structural parameters to those of the state space model

that emerges from the rational expectations solution of the equilibrium conditions.

Our toolkit relies on the tailored random block Metropolis-Hastings (TaRB-MH)

algorithm of Chib and Ramamurthy (2010) to deal with these challenges. Recent

applications of this algorithm to DSGE models include, e.g., Born and Pfeifer

(2014), Rathke et al. (2017), Kulish et al. (2017), and Kapetanios et al. (2019),

while applications to other problems in economics include Kim and Kang (2019)

and Mele (2020), amongst many others. We also introduce the tailoring-at-random-

frequency procedure to accelerate the posterior sampling without losing the validity

and efficiency of the original algorithm. The TaRB-MH algorithm may appear to

require work, but random blocking and tailoring are central to generating efficient

exploration of the posterior distribution. The TaRB-MH algorithm is also available

in DYNARE, but only for models without Student-t shocks and stochastic volatility.

Even there, we have found in experiments that its implementation is not as efficient

as the one in our toolkit.

The marginal likelihood (the integral of the sampling density over the prior of the

parameters) plays a central role in Bayesian model comparisons. In our toolkit we

calculate this quantity by a parallel implementation of the Chib (1995) and Chib and

Jeliazkov (2001) method. The marginal likelihood is also available in DYNARE, but

1 See also, e.g., Dave and Malik (2017), Chiu et al. (2017), Franta (2017), and Liu (2019) for

macroeconomic implications of fat-tailed shocks and stochastic volatility.
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it is obtained by a modified version of the Gelfand and Dey (1994) method [also see,

e.g., Justiniano and Primiceri (2008) and Cúrdia et al. (2014) for use of this method in

DSGE models with Student-t shocks and stochastic volatility]. The latter method,

however, is not as reliable as the Chib and Jeliazkov (2001) method. It is subject to

upward finite-sample bias in models with latent variables and runs the risk of

misleading model comparisons [see Sims et al. (2008) and Chan and Grant (2015) for

such examples]. As this point is not well recognized in the DSGE model literature, we

document its performance in simulated examples. It is shown to mistakenly favor

models with fatter tails and incorrect time-varying variance dynamics. Finally, our

toolkit includes various post-estimation tools that are important for policy analysis,

for example, functions for generating point and density forecasts.

Another goal is to provide pointers on dealing with high-dimensional DSGE models

that promote more reliable estimation and that are incorporated by default in our toolkit.

Due to the complex mapping from the structural parameters to those of the state space

form, standard prior assumptions about structural parameters may still imply a

distribution of the data that is strongly at odds with actual observations. To see if this is

the case, we sample the prior many times, solve for the equilibrium solution, and then

sample the endogenous variables. Second, we suggest the use of a training sample to fix

the hyperparameters. Although training sample priors are common in the vector

autoregression (VAR) literature, they are not typically used in the DSGE setting. We

also suggest the use of the Student-t family of distributions as the prior family for the

location parameters. This tends to further mitigate the possibility of prior-sample

conflicts and leads to more robust results. Finally, we invest in the most efficient way of

sampling different blocks, for example, sampling the non-structural parameters and the

latent variables by the integration sampler of Kim et al. (1998).

The rest of the paper is organized as follows. The next section outlines a

prototypical high-dimensional DSGE model for the subsequent analysis. Sections 3–

5 provide pointers on prior construction, posterior sampling, and model comparison

accompanied by both empirical results and simulation evidence. Section 6 conducts

an out-of-sample forecast analysis. Section 7 concludes. The appendix contains a

detailed summary of the high-dimensional DSGE model (Appendix ‘‘A’’), a small-

scale DSGE model used in Sect. 6 (Appendix ‘‘B’’), and a practical user guide on how

to run our MATLAB toolkit called ‘DSGE-SVt’ (Appendix ‘‘C’’).2

2 High-Dimensional DSGE Model

As a template, we consider an extended version of the new Keynesian model of Leeper

et al. (2017) that includes both fat-tailed shocks and time-varying volatility. This high-

dimensional DSGE model consists of 51 parameters, 21 endogenous variables, 8

exogenous shocks, 8 observable variables, and 1, 494 non-Gaussian and nonlinear

latent variables. For model comparison purposes, we also follow Leeper et al. (2017)

and consider two distinct regimes of the policy parameter space—regime-M and

regime-F—that deliver unique bounded rational expectations equilibria.

2 The toolkit is publicly available at https://github.com/econdojo/dsge-svt. The results reported in this

paper can be replicated by running the program demo.m.
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The Leeper-Traum-Walker model consists of 36 log-linearized equilibrium

equations and can be expressed generically in the form

C0ðhSÞ
ð36�36Þ

xt ¼ C1ðhSÞ
ð36�36Þ

xt�1 þ W
ð36�8Þ

�t þ P
ð36�7Þ

gt ð2:1Þ

where hS is a vector of 27 structural parameters, xt is a vector of 36 model variables,

�t is a vector of 8 shock innovations, gt is a vector of 7 forecast errors, and

ðC0;C1;W;PÞ are coefficient matrices with dimensions indicated below them.

Suppose now, following Chib and Ramamurthy (2014), that the shock innovations

follow a multivariate Student-t distribution, i.e., �t � tmð0;RtÞ. Here m denotes the

degrees of freedom and Rt is a diagonal matrix with the time-varying volatility r2
s;t for

each individual innovation �st on its main diagonal, where s refers to the shock index.3

For estimation convenience, it is useful to represent each element of �t as a mixture of

normals by introducing a Gamma distributed random variable kt,

�st ¼ k�1=2
t eh

s
t=2est ; kt �G

m
2
;
m
2

� �
; est �Nð0; 1Þ ð2:2Þ

For further realism, following Kim et al. (1998), the logarithm of each volatility

hst ¼ ln r2
s;t collected in an 8 � 1 vector ht evolves as a stationary ðj/sj\1Þ process

hst ¼ ð1 � /sÞls þ /sh
s
t�1 þ gst ; gst �Nð0;x2

s Þ ð2:3Þ

where we collect all the volatility parameters ðls;/s;x
2
s Þ in a 24 � 1 vector hV .

Equations (2.1)–(2.3) is the type of high-dimensional DSGE model that is of

much contemporary interest. This model is completed with a measurement equation

that connects the state variables xt to the observable measurements yt. Then, given

the sample data y1:T on an 8 � 1 vector yt for periods t ¼ 1; . . .; T , the goal is to

learn about (i) the model parameters h ¼ ðhS; hVÞ, (ii) the non-Gaussian latent

variables k1:T needed for modeling Student-t shocks, and (iii) the nonlinear latent

variables h1:T representing log volatilities. By now, the general framework for doing

this inference, based primarily on Bayesian tools, is quite well established. If pðhÞ
denotes the prior distribution, then MCMC methods are used to provide sample

draws of the augmented posterior distribution

pðh; k1:T ; h1:T jy1:TÞ / f ðy1:T ; k1:T ; h1:T jhÞ � pðhÞ � 1fh 2 HDg

where f ðy1:T ; k1:T ; h1:T jhÞ is the likelihood function, and 1fh 2 HDg is an indicator

function that equals one if h is in the determinacy region HD and zero otherwise.

Conceptual simplicity aside, sampling this posterior distribution is computation-

ally challenging. These computational challenges are magnified in larger dimen-

sional DSGE models. For this reason, in our view, there is an urgent need for a

simple toolbox that makes the fitting of such models possible, without any attendant

set-up costs. The DGSE-SVt MATLAB toolkit is written to fulfill this need.

3 It is straightforward to introduce, as in Cúrdia et al. (2014), an independent Student-t distribution with

different degrees of freedom for each shock innovation. For exhibition ease, we do not consider this

generalization.
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3 Prior Construction

In the Bayesian estimation of DSGE models, an informative prior distribution (such

as those on the policy parameters /p, cg, cz—see Appendix ‘‘A’’) can play an

important role in emphasizing the regions of the parameter space that are

economically meaningful. It can also introduce curvature into the posterior surface

that facilitates numerical optimization and MCMC simulations.

When it comes to high dimensions, however, constructing an appropriate prior

becomes increasingly difficult due to the complex mapping from the structural

parameters to those of the state space form. Consequently, a reasonable prior for the

structural parameters may still imply a distribution of the data that is strongly at

odds with actual observations. For instance, Fig. 1 shows the implied distributions

for selected sample moments under the original regime-M prior and model

specification of Leeper et al. (2017) (red dashed lines). Most notably, this prior

places little or no mass in the neighborhood of the actual mean of government

spending and the actual standard deviations of investment, government spending,

debt, and hours worked (vertical lines). After taking the model to data, we also find

that the posterior mass for several parameters (e.g., the habit parameter h, the

nominal rigidity parameters xp and xw, and the government spending persistence

qg) lies entirely in the far tail of the corresponding prior, thereby introducing

fragility to the inferences. To cope with these issues, we suggest a two-step

approach for constructing the prior that can avoid such prior-sample conflict.

3.1 Sampling the Prior

The first step follows the sampling the prior approach in, e.g., Geweke (2005) and

Chib and Ergashev (2009). In particular, one starts with a standard prior for the

structural parameters. Here we take that to be the prior in Leeper et al. (2017),

reproduced in Table 5 of Appendix ‘‘A’’.4 Alongside, one specifies an initial prior

for the volatility parameters hV , say one that implies a fairly persistent volatility

process for each shock innovation. Then, one samples this joint prior a large number

of times (say 10,000). For each parameter draw hðgÞ, g ¼ 1; . . .;G, from the prior,

under which the model has a unique bounded solution, one simulates a sample of T

observations y
ðgÞ
1:T . Finally, one computes the implied distributions of various

functions of the data (such as the sample mean, standard deviation, and

autocorrelation) and one checks whether these are close to the corresponding

values in the actual data. If not, one adjusts some or all marginal components of the

prior and repeats the above process.5

4 Because some parameters are held fixed under each regime, effectively, h has 49 elements and hS has

25 elements.
5 In the Leeper et al. (2017) setting with Gaussian shocks and constant volatility, this step suggests that

the original prior for the standard deviation parameters should be adjusted. Alternatively, one could also

adjust other components of the prior for hS.
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It is clear from Fig. 1 that under the adjusted prior, reported in Table 5 of

Appendix ‘‘A’’, the Leeper et al. (2017) model extended with Student-t shocks and

stochastic volatility implies distributions of the data that capture the corresponding

real data quantities in their relatively high density regions (shaded areas).

3.2 Training Sample Prior

In the second step, given the adjusted prior from the first step, one uses the TaRB-

MH algorithm to estimate the DSGE model on the initial 50 observations running

from 1955:Q1 to 1967:Q2. The posterior draws from this run are used to form the

prior. Specifically, the prior type of each parameter is left unchanged, but its

location (dispersion) are set to the corresponding mean (twice standard deviation).

At this point, we suggest that each location parameter l of the volatility process be

assigned a Student-t distribution with 2.1 degrees of freedom. This two-step

construction tends to avoid stark conflict between the prior and the likelihood.

4 Posterior Sampling

We use two primary steps to sample the posterior distribution. The first step samples the

25 structural parameters in hS from the conditional posterior pðhSjy1:T ; h
V ; k1:T ; h1:TÞ

by the TaRB-MH algorithhm of Chib and Ramamurthy (2010). The second step

samples the remaining blocks, including the 24 volatility parameters in hV , the 166 non-

Gaussian latent variables in k1:T , and the 1,328 nonlinear latent variables in h1:T , from

the conditional posterior pðhV ; k1:T ; h1:T jy1:T ; h
SÞ by the Kim et al. (1998) method.

Iterating the above cycle until convergence produces a sample from the joint posterior

pðh; k1:T ; h1:T jy1:TÞ. We provide a brief summary of these steps and refer readers to the

original papers for further details.

4.1 Sampling Structural Parameters

The first step entails sampling hS from

pðhSjy1:T ; h
V ; k1:T ; h1:TÞ / f ðy1:T jhS; k1:T ; h1:TÞ � pðhSÞ � 1fh 2 HDg

using the TaRB-MH algorithm. To form a random partition hS ¼ ðhS1; . . .; h
S
BÞ, we

initialize hS1 with the first element from a permuted sequence of hS, and start a new

b Fig. 1 Distributions of simulated selected quantities obtained by sampling the prior, and then the

outcomes given drawings from the prior. Notes: This figure is based on regime-M model. Each panel
compares the resulting densities under Gaussian shocks with constant volatility (red dashed line) with that
under Student-t shocks with stochastic volatility (shaded area). The kernel smoothed densities are
estimated using 10, 000 simulated draws. Vertical lines denote the real data counterparts
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block with every next element with probability 1 � p. As a result, the average size

of a block is given by ð1 � pÞ�1
. In our benchmark setting, we set p ¼ 0:7 so that

each block contains three to four parameters on average. To generate a candidate

draw, we tailor the Student-t proposal density to the location and curvature of the

posterior distribution for a given block using the BFGS quasi-Newton method

(available as a MATLAB function csminwel written by Chris Sims).6

We also introduce a new procedure, i.e., tailoring-at-random-frequency, to

accelerate the TaRB-MH algorithm. The idea is similar in essence to grouping the

structural parameters into random blocks. Because the tailored proposal density in

the current iteration may remain efficient for the next few iterations, there is

typically no need to re-tailor the proposal density in every iteration. Nevertheless,

there is still a chance that the re-tailored proposal density will be quite different

from the recycled one. Therefore, randomizing the number of iterations before new

blocking and tailoring ensures that the proposal density remains well-tuned on

average. The reciprocal of this average number, which we call the tailoring

frequency x, as well as a number of optional user inputs (e.g., the blocking

probability p), can be specified flexibly in the program tarb.m. In our benchmark

setting, we set x ¼ 0:5 so that each proposal density is tailored every second

iteration on average.

4.2 Sampling Latent Variables and Volatility Parameters

The second step involves augmenting the remaining blocks with 1,328 shock

innovations �1:T and then sampling the joint posterior pðhV ; �1:T ; k1:T ; h1:T jy1:T ; h
SÞ.

To this end, Gibbs sampling is applied to the following conditional densities

pð�1:T jy1:T ; h; k1:T ; h1:TÞ; pðk1:T jy1:T ; h; �1:T ; h1:TÞ; pðhV ; h1:T jy1:T ; h
S; �1:T ; k1:TÞ

The first density is sampled with the disturbance smoother of Durbin and Koopman

(2002). The second density is sampled as in Chib and Ramamurthy (2014) based on

a mixture normal representation of the Student-t distribution. We invest in the most

efficient way of sampling the last density by the integration sampler of Kim et al.

(1998).

4.3 Results

We apply the above steps as coded in our MATLAB toolkit to estimate the high-

dimensional DSGE model based on the post-training sample of 166 quarterly

observations from 1967:Q3 to 2008:Q4. With the ultimate goal of forecasting in

mind, we present the estimation results for the model of best fit among all

6 The same optimization procedure is applied to obtain a starting value hS;ð0Þ for the chain. This

procedure is repeated multiple times, each of which is initialized at a high density point out of a large

number of prior parameter draws. The optimization results will be stored in the MATLAB data file

chaininit.mat, which is saved to the subfolder user/ltw17.
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competing specifications. This specification stands out from an extensive model

search based on a marginal likelihood comparison, as described in the next

section. It has regime-M in place and features heavy-tailed shocks with 5 degrees of

freedom and persistent volatilities.

Because the TaRB-MH algorithm is simulation efficient, a large MCMC sample

is typically not required. We consider a simulation sample size of 11,000 draws, of

which the first 1,000 draws are discarded as the burn-in phase. Figure 2 provides a

graphical comparison of the prior and posterior distributions of each structural

parameter. The Bayesian learning is clear from the graphs. In particular, the data

imply quite high habit formation and relatively high degrees of price and wage

stickiness. See also Table 6 of Appendix ‘‘A’’ for a detailed summary of the

posterior parameter estimates.

Fig. 2 Marginal prior and posterior distributions of each structural parameter. Notes: This figure is based
on regime-M model. Each panel compares the prior (red dashed line) with the posterior (shaded area).
Vertical lines denote posterior means. The kernel smoothed posterior densities are estimated using
10, 000 TaRB-MH draws
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Figure 3 plots the estimated historical log-volatility series for 1967:Q3 to

2008:Q4. Overall, these estimates display clear countercyclical time variation, with

pronounced increases in volatility accompanying the recessions. For several shock

innovations, volatility becomes lower by historical standards since the 1980s so that

the Great Moderation is also evident.

To see the sampling efficiency of the TaRB-MH algorithm, it is informative to

examine the serial correlation among the sampled draws. Figures 8 and 9 of

Appendix ‘‘A’’ display the autocorrelation function for each element of h. As can be

observed, the serial correlations for most parameters decay quickly to zero after a

few lags. Another useful measure of the sampling efficiency is the so-called

inefficiency factor, which approximates the ratio between the numerical variance of

the estimate from the MCMC draws and that from the hypothetical i.i.d. draws. An

efficient sampler produces reasonably low serial correlations and hence inefficiency

Fig. 3 Stochastic volatility of each shock innovation. Notes: Blue dashed lines denote median estimates,
while blue shaded areas delineate 90% highest posterior density bands. Vertical bars indicate recessions
as designated by the National Bureau of Economic Research
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factors. Figure 4 compares the inefficiency factors resulting from two different

sampling schemes, each corresponding to a choice of the tailoring frequency x 2
f0:5; 1:0g with the same blocking probability p ¼ 0:7. Compared to the more

efficient setting that tailors in every iteration (x ¼ 1:0), our benchmark setting that

tailors on average every second iteration (x ¼ 0:5) leads to very similar inefficiency

factors, ranging from 3.37 (1.74) to 103.56 (68.97) with most values below 20 (15)

for the structural (volatility) parameters. In conjunction with a rejection rate of

approximately 50% in the M-H step, the small inefficiency factors suggest that the

chain mixes well. Moreover, choices of x have no material effect on the sampling

efficiency for most volatility parameters due to the use of the integration sampler

that is tailored in every iteration.7

While single blocking or infrequent tailoring can greatly reduce the overall

runtime, it may also add considerably to the average inefficiency factor. Therefore,

in practice, we suggest setting p 2 ½0:6; 0:9� and x 2 ½0:2; 1:0� to maintain a good

balance between runtime and simulation efficiency.

4.4 Simulation Evidence

We also estimate the same high-dimensional DSGE model based on a simulated

data set that is generated under fat-tailed shocks with 15 degrees of freedom and

Fig. 4 Inefficiency factor of each parameter. Notes: The horizontal axis indicates parameter indices. The
vertical line separates the structural (indexed by 1–25) and volatility (indexed by 26–49) parameters

7 It is worth noting that the total runtime for generating 11,000 draws is about 30 hours for x ¼ 0:5 and is

about 43 hours for x ¼ 1:0. These numbers were measured based on a computer with Intel (R) i5-6500

CPU with 16 GB RAM. With an average inefficiency factor of 14.46 for x ¼ 0:5 and 15.66 for x ¼ 1:0,

these numbers translate into 25.36 and 16.34 i.i.d.-equivalent draws per hour, respectively. This

comparison exemplifies that the tailoring-at-random-frequency feature can effectively improve the

computational efficiency of the TaRB-MH algorithm.
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persistent volatilities. We set the sample size to 200, which is meant to be 50 years

of quarterly observations, and use the initial 50 observations to construct a training

sample prior. Table 5 of Appendix ‘‘A’’ lists the parameter values used for the data

generating process under regime-M (column ‘DGP’).8 Figure 10 provides a

graphical comparison of priors and posteriors. For most parameters, the posterior

mass concentrates around the corresponding true value. Figure 11 further reveals

that the estimated log-volatility series largely captures the level and all major trends

of the true series for each shock innovation. These plots are relegated to Appendix

‘‘A’’.

5 Marginal Likelihood

Given the output of the efficient TaRB-MH algorithm, we suggest calculating the

marginal likelihood by the method of Chib (1995), as modified for M-H chains in

Chib and Jeliazkov (2001). This method is computed via the identity

mðy1:T jMÞ ¼
1
c f ðy1:T jM; hÞ � pðhjMÞ � 1fh 2 HDgpðhjM; y1:TÞ

where M denotes the model label, c ¼
R
h2HD

pðhjMÞdh, and the right-hand-side

terms are evaluated at a single high density point h�. We obtain the likelihood

ordinate by a mixture version of the Kalman filter introduced by Chen and Liu

(2000), as facilitated by the conditionally Gaussian and linear structure of the DSGE

model solution. In our application, we find that 10,000 particles are sufficient to

deliver a robust estimate of f ðy1:T jM; h�Þ. We obtain the high-dimensional ordinate

in the denominator after decomposing it as

pðh�jM; y1:TÞ ¼ pðh�1jM; y1:TÞ � pðh�2jM; y1:T ; h
�
1Þ � � �

pðh�BjM; y1:T ; h
�
1; . . .; h

�
B�1Þ

where B refers to the number of blocks (that is under our control), and then estimate

each of these reduced ordinates from the MCMC output of reduced runs.

An interesting point is that these reduced runs are independent of each other and

can be done in parallel. Thus, all reduced ordinates can be estimated at the cost of

one reduced run, regardless of the size of B. This parallel computation is built into

our MATLAB toolkit. In our application, we set the total number of blocks to

B ¼ 15, including seven almost equally sized blocks for hS arranged first, followed

by eight blocks ðl;/;x2Þ for hV . All ordinates are then simultaneously estimated

using MATLAB’s multi-core processing capacity via its Parallel Computing

Toolbox.

8 The DGPs for the structural parameters correspond to their full sample (1955:Q1–2014:Q2) regime-M

estimates reported in Leeper et al. (2017).
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5.1 Reliability

We recommend the Chib and Jeliazkov (2001) method because it is reliable and

because other methods do not generalize to our high-dimensional DSGE models

with non-Gaussian and/or nonlinear latent variables.9 As shown in Chib and

Ramamurthy (2010), efficient MCMC estimation automatically delivers an efficient

estimate of the conditional posterior ordinate pðhb; . . .; hB; k1:T ; h1:T jM;
y1:T ; h

�
1; . . .; h

�
b�1Þ from the output of the reduced MCMC simulation in which hb

is a fixed block and the remaining structural parameters, if any, form random

blocks.10 This, in turn, is used to estimate the marginal likelihood in logarithm

logmðy1:T jMÞ ¼ � log cþ log f ðy1:T jM; h�Þ þ log pðh�jMÞ

�
XB
b¼1

log pðh�bjM; y1:T ; h
�
1; . . .; h

�
b�1Þ

Figure 5 displays the sequence of posterior ordinate and marginal likelihood

estimates from the best fit model, as functions of the number of MCMC draws, for

efficient and (relatively) less efficient TaRB-MH implementations. These estimates

settle down quickly (after say 1,000 draws are made) and converge to the same limit

point, leading to an estimated log marginal likelihood of about �1579:65 with a

numerical standard error of about 0.12. This underscores the point that, since the

Chib (1995) method is underpinned by whatever MCMC algorithm is used in the

posterior simulation, the efficiency of the MCMC simulator is germane to the

calculation of the marginal likelihood.

5.2 Regime Comparison

Because regimes M and F of the Leeper et al. (2017) model imply completely

different mechanisms for price level determination and therefore different policy

advice, identifying which policy regime produced the real data is key to making

good policy choices. While it is difficult to explore the entire model space, we

perform extensive regime comparisons by estimating the marginal likelihood for

both regimes with four choices of the degrees of freedom m 2 f2:1; 5; 15; 30g and

three choices of the volatility persistence / 2 f0:1; 0:5; 0:95g. The resulting model

space contains a total of 24 relevant models that are simultaneously confronted with

9 For instance, the modified harmonic mean (MHM) estimator of Gelfand and Dey (1994), used, for

example, in Justiniano and Primiceri (2008) and Cúrdia et al. (2014) in medium-scale DSGE models with

Student-t shocks and stochastic volatility, always favors a model specification with stronger latent

features, e.g., shocks with fatter tails or volatilities with more persistence. This extreme result emerges

even when the true model exhibits weak evidence of these features, such as those considered in Sect. 5.3.
10 In contrast, Justiniano and Primiceri (2008, p. 636) and Herbst and Schorfheide (2016, p. 97) estimate

the posterior ordinate in a single block, with the random-walk M-H, both detrimental to getting reliable

and efficient marginal likelihood estimates, as already documented in Chib and Jeliazkov (2001).
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the data over the period from 1967:Q3 to 2008:Q4, similar in spirit to the Bayesian

model scan framework proposed by Chib and Zeng (2020).11

Two aspects of the marginal likelihood estimates reported in Table 1 are worth

highlighting. First, the data systematically prefer regime-M over regime-F in all

cases, which corroborates the regime ranking found by Leeper et al. (2017) with

Gaussian shocks and constant volatility. The small numerical standard errors point

to the numerical accuracy of the marginal likelihood estimates. Second, reading the

table by row (column) for each regime suggests that the data exhibit quite strong

evidence in favor of heavy-tailed shocks (persistent volatility process). Indeed, each

11 All computations performed in this section are executed on the High Performance Computing Cluster

maintained by Saint Louis University (https://slu.zendesk.com/hc).

Fig. 5 Recursive posterior ordinates and marginal likelihood. Notes: Ordinates 1–7 (8–15) correspond to
structural (volatility) parameters. The last panel depicts the estimated marginal likelihood. Black solid
lines (with cross marker) correspond to the benchmark setting (p ¼ 0:7, x ¼ 0:5). All estimates are in
logarithm scale
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feature is important for improving the fit, even after accounting for the other, and

the model that fits best is regime-M with m ¼ 5 and / ¼ 0:95.

5.3 Simulation Evidence

This section furnishes additional evidence that demonstrates the reliability of the

Chib (1995) method. For each regime, we generate 20 data sets of 100 quarterly

observations using the subsample parameter estimates reported in Leeper et al.

(2017), which are also reproduced in Table 7 of Appendix ‘‘A’’. We then estimate

three versions of each regime model that differ in the volatility specification. Based

on the marginal likelihood estimates, we count the number of times that each of the

six regime-volatility specifications is picked across the 20 simulated data sets.

Table 2 summarizes the simulation results.

The first data generating process assumes that regime-M is in place and the shock

innovations follow a multivariate Student-t distribution with fat tails, i.e., m ¼ 15,

Table 1 Log marginal likelihood estimates

m / ¼ 0:1 (weak) / ¼ 0:5 (moderate) / ¼ 0:95 (strong)

M F M F M F

30 (light) �1640:73 �1650:03 �1627:24 �1638:81 �1597:72 �1609:69

(0.15) (0.15) (0.14) (0.15) (0.12) (0.13)

15 (fat) �1622:26 �1631:66 �1612:62 �1624:22 �1586:70 �1596:68

(0.14) (0.14) (0.13) (0.13) (0.12) (0.13)

5 (heavy) �1605:77 �1616:95 �1600:18 �1611:05 �1579:65 �1593:11

(0.15) (0.14) (0.14) (0.13) (0.12) (0.12)

2.1 (heavy) �1622:31 �1629:38 �1618:37 �1630:84 �1602:76 �1615:60

(0.15) (0.15) (0.14) (0.12) (0.11) (0.12)

Numerical standard errors are reported in parentheses. All estimates are obtained using 15 reduced TaRB-

MH runs under the benchmark setting (p ¼ 0:7, x ¼ 0:5), including 7 runs for the structural parameters

and 8 runs for the volatility parameters. 10,000 posterior draws are made for each reduced run

Table 2 Number of picks for each model specification

DGP 1: regime-M with m ¼ 15 DGP 2: regime-F with / ¼ 0:5

m regime-M regime-F / regime-M regime-F

30 (light) 4 0 0.1 (weak) 0 9

15 (fat) 15 0 0.5 (moderate) 0 10

5 (heavy) 1 0 0.9 (strong) 0 1

The shock innovations have constant volatility under DGP 1 and follow Gaussian distribution under DGP

2. The number of simulations performed for each DGP is 20
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and constant volatility. For each regime, we fit the model with three degrees of

freedom: m ¼ 30 (light), m ¼ 15 (fat), and m ¼ 5 (heavy). As can be seen from the

left panel of Table 2, the correct degrees of freedom is picked 15 times and the

correct policy regime is always picked. We have also computed the marginal

likelihood by the MHM method as implemented in Justiniano and Primiceri (2008)

and Cúrdia et al. (2014). We find that nearly all data sets favor the lowest degrees of

freedom, i.e., m ¼ 5.

The second data generating process assumes that regime-F is in place and the

shock innovations follow a multivariate Gaussian distribution with moderate time-

varying volatility, i.e., / ¼ 0:5. For each regime, we fit the model with three

degrees of persistence in volatility: / ¼ 0:1 (weak), / ¼ 0:5 (moderate), and / ¼
0:9 (strong). As shown in the right panel of Table 2, with only one exception, the

data overwhelmingly favor weak to moderate degree of persistence in volatility

under the true regime, which is preferred by all data sets over the alternative regime.

However, the computation based on the MHM method always overestimates the

importance of stochastic volatility and selects / ¼ 0:9. This result emerges despite

the fact that all data sets are relatively short-lived and generated by a model with

‘close’ to constant volatility process.

6 Prediction

Because a good understanding of the current and future state of the economy is

essential to develop and implement sound economic policies, generating a

predictive distribution for the future path of the economy constitutes an important

part of the policy analysis. To facilitate this goal, our MATLAB toolkit also

produces, as a byproduct of the efficient TaRB-MH algorithm and the marginal

likelihood computation by the Chib (1995) method, the joint predictive distribution

for all observable variables at any forecasting horizon. For illustration purposes,

Sect. 6.1 presents such a predictive distribution based on the best fitting model that

is selected by the marginal likelihood comparison. Using the predictive distribution

for wages as an example, Sect. 6.2 highlights the importance of allowing for non-

Gaussian structural shocks with time-varying variances in the context of out-of-

sample prediction. Finally, Sect. 6.3 evaluates the predictive performance by

comparing the accuracy of point and density forecasts between a small-scale DSGE

model and our high-dimensional DSGE model.

6.1 Sampling the Predictive Distribution

Let y1:T be the data used to perform estimation, inference, and model selection. In

addition, denote yTþ1:Tþh the future path of the observable variables in the model

economy. Then the predictive distribution is defined as

pðyTþ1:Tþhjy1:TÞ ¼
Z

pðyTþ1:Tþhjy1:T ; hÞ � pðhjy1:TÞdh
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where the above integration is numerically approximated by first sampling the

posterior pðhjy1:TÞ a large number of times by the TaRB-MH algorithm and then

simulating a future path y
ðgÞ
Tþ1:Tþh for each parameter draw. This amounts to moving

model variables forward with h and y1:T . We call pðyi;Tþhjy1:TÞ the h-step-ahead

predictive distribution for the ith variable generated in period T.12

Now we generate the one-quarter-ahead predictive distribution for all eight

observable variables based on the best fitting model as measured by the marginal

likelihood. Throughout the entire forecasting horizon, this model operates under

regime-M and has Student-t shocks with stochastic volatilities. The first predictive

distribution is generated using observations from the third quarter of 1967 to the

fourth quarter of 2008, which is about six months before the Business Cycle Dating

Committee of the National Bureau of Economic Research announces the end of the

Great Recession. The forecasting horizon starts from the first quarter of 2009 and

ends at the second quarter of 2014, covering the whole economic recovery period

from the Great Recession.

Figure 6 displays the median forecasts with 90% credible bands computed from

the predictive distribution of regime-M over the full forecasting horizon. Overall the

model performs quite well in tracking the recovery path of most observable

variables.

6.2 Importance of Non-Gaussian Shocks

As the marginal likelihood comparison reveals, one needs a flexible way to model

structural shocks in the model economy to explain the U.S. macroeconomic

variables. The need of flexible distributional assumptions, such as Student-t shocks

with stochastic volatility, can also be seen from our generated predictive densities as

well. The left panel of Fig. 7 plots the 90% credible sets for wages based on two

predictive distributions: one under Gaussian shocks with constant variance and

another under Student-t shocks with time-varying variance. It is noticeable that the

uncertainty bands are much wider for the model under Student-t shocks with time-

varying variance. To understand this stark difference, the right panel of Fig. 7 plots

the time series of wages over the full sample. As pointed out by Champagne and

Kurmann (2013), wages in the U.S. have become more volatile over the past 20

years. For example, the standard deviation of wages was 0.55 between 1955:Q1 and

1999:Q4, and 1.05 between 2000:Q1 and 2014:Q2. The heightened volatility of

wages after 2000 is captured by the model with stochastic volatility, which

adaptively widens the predictive distribution for wages. On the other hand, the

model with constant variance misses this important change in volatility. In turn, its

predictive distribution of wages is too narrow, underestimating the uncertainty in

the future path of wages. In general, allowing for time-varying volatility produces

similar improvements in the quality of DSGE-based interval and density forecasts

[see, e.g., Diebold et al. (2017)]. Thus, we expect that our toolbox, by making it

easy to incorporate non-Gaussian errors and time-varying variances, will be useful

12 This density function, when it is evaluated at the realized value of yTþ1:Tþhjy1:T , is called a predictive

likelihood. It is oftentimes used for comparing different models [see, e.g., Chib and Greenberg (1995a)].
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for researchers and policymakers interested in better out-of-sample performance of

DSGE models.

6.3 Predictive Performance Comparison

Although regime-M yields a higher marginal likelihood relative to regime-F, one

may still be interested in knowing how the two policy regimes compare in terms of

the quality of point and density forecasts over the forecasting horizon. It is also

interesting to compare the forecasts from a medium-scale DSGE model with those

from a small-scale one when both models are equipped with Student-t shocks and

stochastic volatility. Specifically, we compare the point and density forecasts

generated from regimes M and F, and a small-scale DSGE model described in

Appendix ‘‘B’’. Starting from the first quarter of 2009, we recursively estimate the

Fig. 6 DSGE-model forecast of each observable variable. Notes: Each panel compares the one-quarter-
ahead posterior forecast of regime M with real data (black solid lines). Blue dashed lines denote median
forecasts, while blue shaded areas delineate 90% highest predictive density bands
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three models and generate one-quarter-ahead to two-year-ahead point and density

forecasts until the second quarter of 2014, which results in 22 quarters of evaluation

points for the one-quarter-ahead prediction. Since the small-scale model contains

fewer observable variables, our evaluation exercise only considers the common set

of observable variables: consumption growth, inflation rate, and federal funds rate.

The aim of this comparison is to get information about the strengths and weaknesses

of DSGE model elaborations.

In each model, for each observable variable and forecasting horizon, the point

prediction is the mean of the corresponding predictive distribution. Let byi;tþhjt
denote the h-step-ahead point prediction for the ith variable generated at time t. To

compare the quality of point forecasts, we report the root mean squared error

(RMSE) for the point prediction

RMSEðbyi;tþhjt; yi;tþhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

22 � h

X2014:Q2�h

t¼2009:Q1

yi;tþh � byi;tþhjt

� �2

vuut

where 2014:Q2�h denotes h-quarters before 2014:Q2 and yi;tþh is the actual value

for the ith variable at time t þ h. The model with a smaller RMSE is preferred as the

smaller forecast error is desirable. To compare the precision of predictive densities,

we compute the continuous ranked probability score (CRPS), which is defined as

CRPSðFi;tþhjtðzÞ; yi;tþhÞ ¼
Z
R

Fi;tþhjtðzÞ � 1fyi;tþh � zg
� �2

dz

where Fi;tþhjtðzÞ is the h-step-ahead predictive cumulative distribution of the ith

variable generated at time t. The CRPS is one of the proper scoring rules, and the

predictive distribution with a smaller CRPS is preferred as this measure can be

viewed as the divergence between the given predictive distribution and the

Fig. 7 Predictive distribution and data for wages. Notes: Predictive distributions are constructed using
data up to 2008:Q4. The one-step-ahead prediction corresponds to 2009:Q1. The left panel plots 90%
prediction intervals of regime-M under Gaussian shocks with constant variance (labeled ‘CV-N’, thick
line) and Student-t shocks with time-varying variance (labeled ‘SV-t’, thin line). The right panel plots the
time series of wages (solid line). Dashed lines delineate two standard deviations from the mean for two
sub-samples, i.e., pre- and post-2000
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unattainable oracle predictive distribution that puts a probability mass only on the

realized value. Tables 3 and 4 report the RMSE and average CRPS, respectively, of

consumption growth, inflation rate, and federal funds rate based on all three models.

Table 3 Point forecast

comparison, RMSE
Model h ¼ 1Q h ¼ 2Q h ¼ 4Q h ¼ 8Q

(a) Consumption growth

Small-scale 0.32 0.28 0.25 0.28

Regime-M 0.44 (0.06) 0.48 (0.20) 0.50 (0.22) 0.48 (0.12)

Regime-F 0.40 (0.23) 0.39 (0.16) 0.36 (0.38) 0.37 (0.11)

(b) Inflation rate

Small-scale 0.26 0.32 0.46 0.58

Regime-M 0.24 (0.40) 0.28 (0.31) 0.37 (0.12) 0.44 (0.04)

Regime-F 0.34 (0.00) 0.53 (0.08) 0.86 (0.10) 1.14 (0.14)

(c) Federal funds rate

Small-scale 0.21 0.38 0.64 0.94

Regime-M 0.06 (0.00) 0.12 (0.01) 0.19 (0.01) 0.42 (0.01)

Regime-F 0.06 (0.00) 0.12 (0.02) 0.18 (0.02) 0.22 (0.01)

Each entry reports the RMSE based on the point forecast with the p-

value of Diebold-Mariano (DM) tests of equal MSE in parentheses,

obtained using the fixed-b critical values. The standard errors

entering the DM statistics are computed using the equal-weighted

cosine transform (EWC) estimator with the truncation rule

recommended by Lazarus et al. (2018)

Table 4 Density forecast

comparison, average CRPS
Model h ¼ 1Q h ¼ 2Q h ¼ 4Q h ¼ 8Q

(a) Consumption growth

Small-scale 0.21 0.2 0.19 0.2

Regime-M 0.26 (0.08) 0.28 (0.28) 0.29 (0.31) 0.28 (0.20)

Regime-F 0.23 (0.40) 0.22 (0.41) 0.21 (0.72) 0.22 (0.46)

(b) Inflation rate

Small-scale 0.15 0.18 0.26 0.34

Regime-M 0.14 (0.48) 0.17 (0.53) 0.23 (0.29) 0.28 (0.11)

Regime-F 0.20 (0.00) 0.31 (0.03) 0.52 (0.05) 0.69 (0.08)

(c) Federal funds rate

Small-scale 0.13 0.24 0.43 0.67

Regime-M 0.04 (0.00) 0.07 (0.02) 0.13 (0.01) 0.27 (0.01)

Regime-F 0.04 (0.00) 0.07 (0.02) 0.12 (0.02) 0.19 (0.01)

Each entry reports the average CRPS over the evaluation period with

the p-value of Diebold-Mariano (DM) tests of equal CRPS in

parentheses, obtained using the fixed-b critical values. The standard

errors entering the DM statistics are computed using the equal-

weighted cosine transform (EWC) estimator with the truncation rule

recommended by Lazarus et al. (2018)
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Forecasts from the medium-scale models are significantly more accurate for the

federal funds rate at all horizons. On the other hand, forecasts from the small-scale

model are more accurate for the consumption growth at all horizons although the

difference is only statistically significant at the one-quarter-ahead horizon. The

major difference between regimes M and F lies in the inflation forecasts, and the

model under regime-M produces forecasts with lower RMSEs (CRPSs). The RMSE

(CRPS) gaps get wider as the forecasting horizon extends, and the RMSE (CRPS)

from regime-M becomes more than half of that from regime-F. In contrast, the

forecasts from regime-F fare slightly better for the consumption growth at all

horizons and are most accurate for the federal funds rate at the two-year-ahead

horizon.

In sum, there is no clear winner in this comparison. The small-scale model

performs better for forecasting the consumption growth. The medium-scale model,

on the other hand, performs the best under regime-M for forecasting the inflation

rate but does not generate better forecasts under regime-F except for forecasting the

federal funds rate in the long run. Although the evaluation period is too short-lived

to draw a definite conclusion, the results from this out-of-sample forecasting

exercise indicate that there is still room for improvement even for the more complex

models.

7 Concluding Remarks

We have given pointers on the fitting and comparison of high-dimensional DSGE

models with latent variables and shown that the TaRB-MH algorithm of Chib and

Ramamurthy (2010) allows for the efficient estimation of such models. We

implement the TaRB-MH algorithm for the class of DSGE models with stochastic

volatility and t errors. We introduce two new features into the original TaRB-MH

algorithm and demonstrate that they lead to a decent computational gain. By

tailoring the proposal density at a random frequency, we speed up the posterior

sampling without losing the validity and efficiency of the original algorithm. We

show that the method of Chib (1995) and Chib and Jeliazkov (2001), in conjunction

with a parallel implementation of the required reduced MCMC runs, can be used to

obtain reliable and fast estimates of the marginal likelihood. In addition, we

emphasize the importance of training sample priors, which is new in the DSGE

context, and the use of the Student-t, as opposed to the normal family, as the prior

distribution for location-type parameters. With the help of a user-friendly MATLAB

toolkit, these methods can be readily employed in academic and central bank

applications to conduct DSGE model comparisons and to generate point and density

forecasts. Finally, in ongoing work, we are applying this toolkit, without

modification and any erosion in performance, to open economy DSGE models

that contain more than twice as many parameters and latent variables as the model

showcased in this paper. Findings from this analysis will be reported elsewhere.
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Appendix A: Leeper-Traum-Walker ModelLinearized System

Unless otherwise noted, we let x̂t 	 ln xt � ln x denote the log-deviation of a generic

variable xt from its steady state x. We also divide a non-stationary variable Xt by the

level of technology At and express the detrended variable as xt ¼ Xt=At.

Firms

The production sector consists of firms that produce intermediate and final goods. A

perfectly competitive final goods producer uses intermediate goods supplied by a

continuum of intermediate goods producers indexed by i on the interval [0, 1] to

produce the final goods. The production technology Yt �
R 1

0
YtðiÞ1=ð1þgpt Þdi

� �1þgpt
is

constant-return-to-scale, where gpt is an exogenous price markup shock, Yt is the

aggregate demand of final goods, and YtðiÞ is the intermediate goods produced by

firm i.
Each intermediate goods producer follows a production technology

YtðiÞ ¼ KtðiÞa AtL
d
t ðiÞ

� �1�a�AtX, where KtðiÞ and Ldt ðiÞ are the capital and the

amount of ‘packed’ labor input rented by firm i at time t, and 0\a\1 is the income

share of capital. At is the labor-augmenting neutral technology shock and its growth

rate uat 	 lnðAt=At�1Þ equals c[ 0 when At evolves along the balanced growth path.

The parameter X[ 0 represents the fixed cost of production.

Intermediate goods producers maximize their profits in two stages. First, they

take the input prices, i.e., nominal wage Wt and nominal rental rate of capital Rk
t , as

given and rent Ldt ðiÞ and KtðiÞ in perfectly competitive factor markets. Second, they

choose the prices that maximize their discounted real profits. Here we introduce the

Calvo-pricing mechanism for nominal price rigidities. Specifically, a fraction

0\xp\1 of firms cannot change their prices each period. All other firms can only

partially index their prices by the rule PtðiÞ ¼ Pt�1ðiÞ p
vp
t�1p

1�vp
� �

, where Pt�1ðiÞ is

indexed by the geometrically weighted average of past inflation pt�1 and steady

state inflation p. The weight 0\vp\1 controls the degree of partial indexation.

The production sector can be summarized by four log-linearized equilibrium

equations in terms of six parameters ða;X; b;xp; vp; g
pÞ, seven endogenous

variables ðŷt; k̂t; L̂t; r̂kt ; ŵt; cmct; p̂tÞ, and one exogenous shock ûpt :

Production function: ŷt ¼
yþ X
y

ak̂t þ ð1 � aÞL̂t
� �

ðA:1Þ

Capital-labor ratio: r̂kt � ŵt ¼ L̂t � k̂t ðA:2Þ

Marginal cost: cmct ¼ ar̂kt þ ð1 � aÞŵt ðA:3Þ
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Phillips equation: p̂t ¼
b

1 þ bvp
Etp̂tþ1 þ

vp
1 þ bvp

p̂t�1 þ jpcmct þ ûpt ðA:4Þ

where jp 	 ½ð1 � bxpÞð1 � xpÞ�=½xpð1 þ bvpÞ�, ĝpt 	 lnð1 þ gpt Þ � lnð1 þ gpÞ, ĝpt
is normalized to ûpt 	 jpĝ

p
t , and Et represents mathematical expectation given

information available at time t.

Households

The economy is populated by a continuum of households indexed by j on the

interval [0, 1]. Each optimizing household j derives utility from composite

consumption C�
t ðjÞ, relative to a habit stock defined in terms of lagged aggregate

composite consumption hC�
t�1 where 0\h\1. The composite consumption consists

of private CtðjÞ and public Gt consumption goods, i.e., C�
t ðjÞ	CtðjÞ þ aGGt, where

aG governs the degree of substitutability of the consumption goods. Each household

j also supplies a continuum of differentiated labor services Ltðj; lÞ where l 2 ½0; 1�.

Households maximize their expected lifetime utility E0

P
t¼0

1
btubt lnðC�

t ðjÞ � hC�
t�1Þ

�

�LtðjÞ1þn=ð1 þ nÞ�, where 0\b\1 is the discount rate, n[ 0 is the inverse of

Frisch labor supply elasticity, and ubt is an exogenous preference shock.

Households have access to one-period nominal private bonds Bs;t that pay one

unit of currency at time t þ 1, sell at price R�1
t at time t, and are in zero net supply.

They also have access to a portfolio of long-term nominal government bonds Bt,

which sell at the price PB
t at time t. Maturity of these zero-coupon bonds decays at

the constant rte 0\q\1 to yield the average duration ð1 � qbÞ�1
. Households

receive bond earnings, labor and capital rental income, lump-sum transfers from the

government Zt, and profits from firms Pt. They spend income on consumption,

investment It, and bonds. The nominal flow budget constraint for household j is

given by

ð1 þ sCÞPtCtðjÞ þ PtItðjÞ þ PB
t BtðjÞ þ R�1

t Bs;tðjÞ
¼ ð1 þ qPB

t ÞBt�1ðjÞ þ Bs;t�1ðjÞ

þ ð1 � sLÞ
Z 1

0

WtðlÞLtðj; lÞdlþ ð1 � sKÞRk
t vtðjÞ �Kt�1ðjÞ

�WðvtÞ �Kt�1ðjÞ þ PtZtðjÞ þPtðjÞ

where WtðlÞ is the nominal wage charged by the household for type l labor service.

Consumption and labor income are, in nominal terms, subject to a sales tax sC [ 0

and a labor income tax sL [ 0, respectively.

Effective capital K(j), which is subject to a rental income tax sK [ 0, is related to

physical capital �KðjÞ via KtðjÞ ¼ vtðjÞ �Kt�1ðjÞ, where vtðjÞ is the utilization rate of

capital chosen by households and incurs a nominal cost of WðvtÞ per unit of physical
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capital.13 Physical capital is accumulated by households according to

�KtðjÞ ¼ ð1 � dÞ �Kt�1ðjÞ þ uit 1 � S ItðjÞ
It�1ðjÞ

� �� �
ItðjÞ, where 0\d\1 is the depreciation

rate, Sð�ÞIt is an investment adjustment cost and uit is an exogenous investment-

specific efficiency shock.14

There are perfectly competitive labor packers that hire a continuum of

differentiated labor inputs LtðlÞ, pack them to produce an aggregate labor service

and then sell it to intermediate goods producers. The labor packer uses the Dixit-

Stiglitz aggregator for labor aggregation Ldt ¼
R 1

0
LtðlÞ1=ð1þgwt Þdl

� �1þgwt
, where Ldt is

the aggregate labor service demanded by intermediate goods producers, LtðlÞ is the

lth type labor service supplied by all the households and demanded by the labor

packer, and gwt is an exogenous wage markup shock.

For the optimal wage setting problem, we adopt the Calvo-pricing mechanism for

nominal wage rigidities. Specifically, of all the types of labor services within each

household, a fraction 0\xw\1 of wages cannot be changed each period. The

wages for all other types of labor services follow a partial indexation rule

WtðlÞ ¼ Wt�1ðlÞ pt�1e
uat�1

� �vw pecð Þ1�vw , where Wt�1ðlÞ is indexed by the geometri-

cally weighted average of the growth rates of nominal wage in the past period and in

the steady state, respectively. The weight 0\vw\1 controls the degree of partial

indexation.

The household sector can be summarized by ten log-linearized equilibrium

equations in terms of seventeen parameters ðh; c; aG; q; sC; sK ; sL;w; b;
c; s; d; n;xw; vw; qa; g

wÞ, fifteen endogenous variables ðk̂t; ĉ�t ; ĉt; ĝt; R̂t; p̂t; P̂
B

t ;

r̂kt ; v̂t; q̂t; ît; k̂t;
�̂kt; ŵt; L̂tÞ, and four exogenous shocks ðûat ; ûbt ; ûit; ûwt Þ:

Optimal consumption: k̂t ¼ ûbt �
h

ec � h
ûat �

ec

ec � h
ĉ�t

þ h

ec � h
ĉ�t�1 �

sC

1 þ sC
ŝCt

ðA:5Þ

Composite consumption: ĉ�t ¼
c

cþ aGg
ĉt þ

aGg
cþ aGg

ĝt ðA:6Þ

Consumption Euler: k̂t ¼ R̂t þ Etk̂tþ1 � Etp̂tþ1 � Etû
a
tþ1

ðA:7Þ

Bond pricing: R̂t þ P̂
B

t ¼ qPB

1 þ qPB
EtP̂

B

tþ1 ¼ q
R
EtP̂

B

tþ1
ðA:8Þ

Optimal capital utilization: r̂kt �
sK

1 � sK
ŝKt ¼ w

1 � w
v̂t ðA:9Þ

13 Define the parameter 0\w\1 such that
W00ð1Þ
W0 ð1Þ 	

w
1�w.

14 Sð�Þ satisfies S0ðecÞ ¼ 0 and S00ðecÞ 	 s[ 0.
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Optimal physical capital: q̂t ¼ Etk̂tþ1 � k̂t � Etû
a
tþ1 þ be�cð1 � sKÞrkEt r̂ktþ1

� be�csKrkEtŝ
K
tþ1 þ be�cð1 � dÞEtq̂tþ1

ðA:10Þ

Optimal investment: ît ¼ � 1

1 þ b
ûat þ

1

ð1 þ bÞse2c
q̂t þ ûit þ

b
1 þ b

Et îtþ1

þ b
1 þ b

Etû
a
tþ1 þ

1

1 þ b
ît�1

ðA:11Þ

Effective capital: k̂t ¼ v̂t þ �̂kt�1 � ûat ðA:12Þ

Capital law of motion: �̂kt ¼ ½1 � ð1 � dÞe�c�ðð1 þ bÞse2cûit þ îtÞ

þ ð1 � dÞe�cð �̂kt�1 � ûat Þ
ðA:13Þ

Wage equation: ŵt ¼ �jw ŵt � nL̂t � ûbt þ k̂t �
sL

1 � sL
ŝLt

	 


þ 1

1 þ b
ŵt�1 þ

b
1 þ b

Etŵtþ1 þ
vw

1 þ b
p̂t�1

� 1 þ bvw
1 þ b

p̂t þ
b

1 þ b
Etp̂tþ1

þ vw
1 þ b

ûat�1 �
1 þ bvw � qab

1 þ b
ûat þ ûwt

ðA:14Þ

where jw 	 ½ð1 � bxwÞð1 � xwÞ�=½xwð1 þ bÞð1 þ ð1=gw þ 1ÞnÞ�,
ĝwt 	 lnð1 þ gwt Þ � lnð1 þ gwÞ, ĝwt is normalized to ûwt 	 jwĝ

w
t , ~̂uit is normalized to

ûit 	 1
ð1þbÞse2c ~̂u

i
t, and kt is the Lagrange multiplier associated with the household’s

budget constraint. We set the capital, labor, and consumption tax rates to their

constant steady states so that ŝKt ¼ ŝLt ¼ ŝCt ¼ 0.

Monetary and Fiscal Policy

The central bank implements monetary policy according to a Taylor-type interest

rate rule. The government collects revenues from capital, labor, and consumption

taxes, and sells nominal bond portfolios to finance its interest payments and

expenditures. The fiscal choices must satisfy the government budget constraint

PB
t Bt þ sKRK

t Kt þ sLWtLt þ sCPtCt ¼ ð1 þ qPB
t ÞBt�1 þ PtGt þ PtZt, where we

have assumed the lump sum transfers are equal across households, i.e.,R 1

0
ZtðjÞdj ¼ Zt, and fiscal instruments follow the simple rules specified below.

The government sector can be summarized by seven log-linearized equilibrium

equations in terms of thirteen parameters ðsC; sK ; sL; b; c;q; qr; qg; qz;/p;/y; cg; czÞ,
sixteen endogenous variables ðb̂t; r̂kt ; k̂t; ŵt; L̂t; ĉt; p̂t; P̂

B

t ; ĝt; ẑt; ŷt; ît; v̂t; R̂t; ŝ
b
t ; ŝtÞ, and

four exogenous shocks ðûat ; ûmt ; ûgt ; ûzt Þ:
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Government budget constraint:
b

y
b̂t þ sKrk

k

y
ŝKt þ r̂kt þ k̂t
� �

þ sLw
L

y
ŝLt þ ŵt þ L̂t
� �

þ sC
c

y
ðŝCt þ ĉtÞ

¼ 1

b
b

y
b̂t�1 � p̂t � P̂

B

t�1 � ûat

h i

þ b

y

q
pec

P̂
B

t þ
g

y
ĝt þ

z

y
ẑt

ðA:15Þ

Aggregate resource constraint:ŷt ¼
c

y
ĉt þ

i

y
ît þ

g

y
ĝt þ w0ð1Þ k

y
v̂t ðA:16Þ

Monetary policy rule:R̂t ¼ qrR̂t�1 þ ð1 � qrÞ /pp̂t þ /yŷt
� �

þ ûmt ðA:17Þ

Fiscal policy rule:ĝt ¼ qgĝt�1 � ð1 � qgÞcgŝbt�1 þ ûgt ðA:18Þ

ẑt ¼ qzẑt�1 � ð1 � qzÞczŝbt�1 þ ûzt ðA:19Þ

Real primary surplus:ŝt ¼ sKrk
k

s
ŝKt þ r̂kt þ k̂t
� �

þ sLw
L

s
ŝLt þ ŵt þ L̂t
� �

þ sC
c

s
ðŝCt þ ĉtÞ �

g

s
ĝt �

z

s
ẑt

ðA:20Þ

Debt-to-output ratio:ŝbt ¼ b̂t � ŷt ðA:21Þ

where sbt�1 	 PB
t�1

Bt�1

Pt�1Yt�1
denotes the market value of the debt-to-GDP ratio,

s ¼ sKrkk þ sLwLþ sCc� g� z, 0\qr; qg; qz\1 measure policy smoothness,

/p;/y [ 0 and cg; cz are policy parameters, and ðûmt ; ûgt ; ûzt Þ are exogenous policy

shocks.

Exogenous Processes

All exogenous shocks follow autoregressive processes

ûst ¼ qesû
s
t�1 þ �st ; s 2 fa; b; i; p;w;m; g; zg ðA:22Þ

where qes 2 ð0; 1Þ and the innovations �st are serially uncorrelated and independent

of each other at all leads and lags.
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Original System

Since the economy features a stochastic trend induced by the permanent technology

shock At, some variables are not stationary. To induce stationarity, we therefore

detrend these variables as: yt 	 Yt
At

, c�t 	
C�
t

At
, ct 	 Ct

At
, kt 	 Kt

At
, �kt 	

�Kt

At
, it 	 It

At
, gt 	 Gt

At
,

zt 	 Zt
At

, bt 	 PB
t Bt

PtAt
, wt 	 Wt

PtAt
, kt 	 KtAt. The model’s equilibrium system in terms of

the detrended variables can be summarized as follows.

Production function:

ytD
p
t ¼ kat ðLdt Þ

1�a � X ðA:23Þ

Capital-labor ratio:

kt
Ldt

¼ wt

rkt

a
1 � a

ðA:24Þ

Real marginal cost:

mct ¼ ð1 � aÞa�1a�aðrkt Þ
aw1�a

t ðA:25Þ

Intermediate goods producer’s optimal price:

Et
X
k¼0

1
ðbxpÞkktþk �ytþk p�t

Yk
s¼1

ptþs�1

p

� �vp p
ptþs

 "

�ð1 þ gptþkÞmctþk

��
¼ 0

ðA:26Þ

Evolution of aggregate price index:

1 ¼ ð1 � xpÞðp�t Þ
� 1

gp
t þ xp

pt�1

p

� �vp p
pt

	 
� 1

gp
t ðA:27Þ

Optimal consumption:

ktð1 þ sCt Þ ¼
ubt

c�t � hc�t�1e
�uat

ðA:28Þ

Composite consumption:

c�t ¼ ct þ aGgt ðA:29Þ

Consumption Euler equation:

kt ¼ bRtEt
ktþ1e

�uatþ1

ptþ1

	 

ðA:30Þ
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Bond pricing relation:

PB
t ¼ Et

1 þ qPB
tþ1

Rt

	 

ðA:31Þ

Optimal capital utilization:

ð1 � sKt Þrkt ¼ w0ðvtÞ ðA:32Þ

Optimal physical capital:

qt ¼ bEt
ktþ1

kt
e�uatþ1 ð1 � sKtþ1Þrktþ1vtþ1 � wðvtþ1Þ þ ð1 � dÞqtþ1

� �	 

ðA:33Þ

where qt is the real price of capital in terms of consumption goods (i.e., Tobin’s Q).

Optimal investment:

1 ¼qt ~u
i
t 1 � S

ite
uat

it�1

� �
� S0

ite
uat

it�1

� �
ite

uat

it�1

� �

þ bEt qtþ1

ktþ1e
�uatþ1

kt
~uitþ1S

0 itþ1e
uatþ1

it

� �
itþ1e

uatþ1

it

� �2
" # ðA:34Þ

Effective capital:

kt ¼ vt �kt�1e
�uat ðA:35Þ

Law of motion for capital:

�kt ¼ ð1 � dÞe�uat �kt�1 þ ~uit 1 � S
ite

uat

it�1

� �� �
it ðA:36Þ

Optimal wage:

Et
X
k¼0

1
ðbxwÞkktþk

�Ltþk w�
t

Yk
s¼1

ptþs�1e
uatþs�1

pec

� �vw pec

ptþse
uatþs

 "

�
ð1 þ gwtþkÞubtþk

�L
n
tþk

ð1 � sLtþkÞktþk

!#
¼ 0

ðA:37Þ

where

�Ltþk ¼
w�
t

wtþk

Yk
s¼1

ptþs�1e
uatþs�1

pec

� �vw pec

ptþse
uatþs

" #�1þgw
tþk

gw
tþk

Ldtþk
ðA:38Þ
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Evolution of aggregate wage index:

w
� 1

gw
t

t ¼ ð1 � xwÞðw�
t Þ

� 1
gw
t þ xw

pt�1e
uat�1

pec

� �vw pec

pteu
a
t

� �
wt�1

	 
� 1
gw
t ðA:39Þ

Government budget constraint:

bt þ sKt r
k
t kt þ sLt wtLt þ sCt ct ¼

1 þ qPB
t

PB
t�1

bt�1

pteu
a
t
þ gt þ zt ðA:40Þ

Aggregate resource constraint:

yt ¼ ct þ it þ gt þ wðvtÞ �kt�1e
�uat ðA:41Þ

Steady States

To solve for the steady states, we calibrate b ¼ 0:99, a ¼ 0:33, d ¼ 0:025, the

average maturity of government bond portfolio AD ¼ 20, gw ¼ gp ¼ 0:14,

g=y ¼ 0:11, b=y ¼ 1:47, sC ¼ 0:023, sK ¼ 0:218, and sL ¼ 0:186. By assumption,

v ¼ 1, wðvÞ ¼ 0, and SðecÞ ¼ S0ðecÞ ¼ 0. The remaining steady states can be solved

as follows.

From AD:

q ¼ 1 � 1

AD

� �
1

b
ðA:42Þ

From (A.30):

R ¼ ecp
b

ðA:43Þ

From (A.31):

PB ¼ b
ecp� qb

ðA:44Þ

From ~ui ¼ 1 and (A.34):

q ¼ 1 ðA:45Þ

From (A.33):

rk ¼
ec

b � ð1 � dÞ
1 � sK

ðA:46Þ

From (A.32):
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w0ð1Þ ¼ rkð1 � sKÞ ðA:47Þ

From (A.26):

mc ¼ 1

1 þ gp
ðA:48Þ

From (A.25):

w ¼ mcð1 � aÞ1�aaaðrkÞ�a
h i 1

1�a ðA:49Þ

From (A.24):

k

L
¼ a

1 � a
w

rk
ðA:50Þ

From Dp ¼ 1, the final goods producer’s zero profit condition, and (A.23):

X
L
¼ k

L

� �a

�rk
k

L
� w ðA:51Þ

From (A.51):

y

L
¼ k

L

� �a

�X
L

ðA:52Þ

From (A.35):

�k ¼ kec ðA:53Þ

From (A.36):

i

L
¼ 1 � ð1 � dÞe�c½ �ec k

L
ðA:54Þ

From (A.41):

c

L
¼ y

L
1 � g

y

� �
� i

L
ðA:55Þ

From (A.40):

z

L
¼ 1 � R

pec

� �
b

y
� g

y

	 

y

L
þ sC

c

L
þ sLwþ sKrk

k

L
ðA:56Þ

From (A.29):

c�

L
¼ c

L
þ aG

g

y

y

L
ðA:57Þ
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From (A.37) and (A.39):

L ¼ wð1 � sLÞ
ð1 þ sCÞð1 þ gwÞ

1

ð1 � he�cÞ c�L

	 
 1
nþ1

ðA:58Þ

from which all level variables can be calculated from the steady state ratios given

above.

Taking Model to Data

Define the private sector’s one-step-ahead endogenous forecast errors as

gxt 	 x̂t � Et�1x̂t; x 2 fk;p; i; q; rk;w;PBg: ðA:59Þ

The model consists of 36 log-linearized equilibrium equations and can be cast into

the rational expectations system

Cee
0 Cez

0 Ced
0

0 I 0

½0; I� 0 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C0ðhSÞ
ð36�36Þ

xet
xzt
xdt

2
64

3
75

|fflffl{zfflffl}
xt

ð36�1Þ

¼
Cee

1 Cez
1 0

0 P 0

0 0 I

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
C1ðhSÞ
ð36�36Þ

xet�1

xzt�1

xdt�1

2
64

3
75

|fflfflfflffl{zfflfflfflffl}
xt�1
ð36�1Þ

þ
0

I

0

2
64

3
75

|ffl{zffl}
W

ð36�8Þ

�t
ð8�1Þ

þ
0

0

I

2
64

3
75

|ffl{zffl}
P

ð36�7Þ

gt
ð7�1Þ

ðA:60Þ

where I denotes the identity matrix, P ¼ diag qea; qeb; qei; qep; qew; qem; qeg; qez
� �

,

xet
ð21�1Þ

¼ ½ŷt; ĉ�t ; ĉt; k̂t; �̂kt; v̂t; L̂t; cmct; b̂t; ĝt; ẑt; R̂t; ŝ
b
t ; ŝt; k̂t; p̂t; ı̂t; q̂t; r̂

k
t ; ŵt; P̂

B

t �

are the endogenous variables,

xzt
ð8�1Þ

¼ ½ûat ; ûbt ; ûit; ûpt ; ûwt ; ûmt ; ûgt ; ûzt �

are the exogenous shocks,

xdt
ð7�1Þ

¼ ½Etk̂tþ1; Etp̂tþ1; Et ı̂tþ1; Etq̂tþ1; Et r̂
k
tþ1; Etŵtþ1; EtP̂

B

tþ1�

are the conditional expectations of the last seven elements of xetþ1 ,

�t
ð8�1Þ

¼ ½�at ; �bt ; �it; �pt ; �wt ; �mt ; �gt ; �zt �
0

are the shock innovations, and

gt
ð7�1Þ

¼ ½gkt ; gpt ; git; gqt ; gr
k

t ; g
w
t ; g

PB

t �0

are the forecast errors.
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Here the first row of (A.60) stacks the 21 structural equations (A.1)– (A.21), the

second row stacks the 8 shock processes (A.22), and the third row stacks the 7

definitional equations (A.59). The unknown parameters h consist of the structural

parameters

hS
ð27�1Þ

¼ ½100c; n; h; aG;w; s;xp;xw; vp; vw;/p;/y; cg;

cz; qr; qg; qz; qea; qeb; qei; qep; qew; qem; qeg; qez; �L; �p�

and the volatility parameters

hV
ð24�1Þ

¼½la; lb; li; lp; lw; lm; lg; lz;/a;/b;/i;

/p;/w;/m;/g;/z;x
2
a;x

2
b;x

2
i ;x

2
p;x

2
w;x

2
m;x

2
g;x

2
z �:

Conditional on hS and independent of the volatility processes, the above

structural system can be solved by the procedure of Sims (2002) to deliver a linear

solution of the form

xt ¼ GðhSÞ
ð36�36Þ

xt�1 þMðhSÞ
ð36�8Þ

�t ðA:61Þ

which is then estimated over a vector yt of 8 observable variables stacked in

y1:T ¼ ½y1; . . .; yT �0, including log differences (denoted dl) of consumption, invest-

ment, real wage, government spending, and government debt; log (denoted l) hours

worked, inflation, and nominal interest rate.15 The observable variables are linked to

the model variables xt via the following measurement equations:

dlConst

dlInvt

dlWaget

dlGovSpendt

dlGovDebtt

lHourst

lInflt

lFedFundst

2
66666666666664

3
77777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
yt

¼

100c

100c

100c

100c

100c
�L

�p

�pþ 100ðc=b� 1Þ

2
66666666666664

3
77777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

þ

ĉt � ĉt�1 þ ûat
ît � ît�1 þ ûat
ŵt � ŵt�1 þ ûat
ĝt � ĝt�1 þ ûat

b̂t � b̂t�1 þ ûat
L̂t

p̂t
R̂t

2
66666666666664

3
77777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zxt

:
ðA:62Þ

Let k1:T ¼ ½k1; . . .; kT �0 contain all non-Gaussian latent states and h1:T ¼
½h01; . . .; h0T �

0
contain all nonlinear latent states. In our empirical application

(T ¼ 166), k1:T and h1:T have a total of 1,494 elements. In conjunction with the

shock volatility specifications (2.2) and (2.3), equations (A.61) and (A.62) form a

state space representation of the DSGE model whose conditional likelihood function

f ðy1:T jh; k1:T ; h1:TÞ can be evaluated with the Kalman filter.

15 See the Online Appendix of Leeper et al. (2017) for details on data construction.
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Tables and Figures

• Table 5 lists the marginal prior distributions and the true values for the high-

dimensional DSGE model under regime-M.

• Table 6 summarizes the posterior parameter estimates for the model of best fit.

• Table 7 reproduces the subsample posterior parameter estimates reported in

Leeper et al. (2017), which are used to generate the simulated data sets in

Sect. 5.3.

• Figures 8 and 9 display the autocorrelation function for each model parameter.

• Figures 10 and 11 compare the model’s estimated parameters and volatilities

with their true values, respectively.

Appendix B: Small-Scale DSGE Model

A log-linear approximation to the model’s equilibrium conditions around the steady

state can be summarized as follows:

Dynamic IS equation:ĉt ¼ Et ĉtþ1 �
1

s
ðR̂t � Etp̂tþ1 � Et ẑtþ1Þ ðB:1Þ

New Keynesian Phillips curve:p̂t ¼ bEtp̂tþ1 þ jĉt ðB:2Þ

Monetary policy:R̂t ¼ qRR̂t�1 þ ð1 � qRÞ½w1p̂t þ w2ðĉt þ ĝtÞ� þ �R;t ðB:3Þ

Technology shock:ẑt ¼ qzẑt�1 þ �z;t ðB:4Þ

Government spending shock:ĝt ¼ qgĝt�1 þ �g;t ðB:5Þ

Here s[ 0 is the coefficient of relative risk aversion, 0\b\1 is the discount

factor, j[ 0 is the slope of the new Keynesian Phillips curve, w1 [ 0 and w2 [ 0

are the policy rate responsive coefficients, and 0� qR; qz; qg\1. Moreover, ct is the

detrended consumption, pt is the inflation between periods t � 1 and t, Rt is the

nominal interest rate, zt is an exogenous shock to the labor-augmenting technology

that grows on average at the rate c, and gt is an exogenous government spending

shock. Finally, the shock innovations �t ¼ ½�R;t; �z;t; �g;t�0 follow a multivariate Stu-

dent-t distribution, i.e., �t � tmð0;RtÞ, where Rt ¼ diag eht
� �

and each element of

ht ¼ ½hRt ; hzt ; h
g
t �0 follows a stationary process

hst ¼ ð1 � /sÞls þ /sh
s
t�1 þ gst ; gst �Nð0;x2

s Þ; s 2 fR; z; gg: ðB:6Þ

The model is estimated over three observable variables, including log difference

of consumption, log inflation, and log nominal interest rate. The observable

variables are linked to the model variables via the following measurement

equations,
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Table 5 Priors and true values for high-dimensional DSGE model parameters

Structural parameters Volatility parameters

Name Density (1, 2) DGP Name Density (1, 2) DGP

100c N ð0:40; 0:05Þ 0.25 la tm ð�7:0; 2:0Þ �4:6

n G ð2:00; 0:50Þ 1.77 lb tm ð�7:0; 2:0Þ �4:6

h B ð0:50; 0:20Þ 0.99 li tm ð�7:0; 2:0Þ �4:6

aG U ð�1:75; 1:75Þ �0:25 lp tm ð�7:0; 2:0Þ �4:6

w B ð0:60; 0:15Þ 0.16 lw tm ð�7:0; 2:0Þ �4:6

s N ð6:00; 1:50Þ 5.46 lm tm ð�7:0; 2:0Þ �4:6

xp B ð0:50; 0:20Þ 0.92 lg tm ð�7:0; 2:0Þ �4:6

xw B ð0:50; 0:20Þ 0.91 lz tm ð�7:0; 2:0Þ �4:6

vp B ð0:50; 0:20Þ 0.06 /a B ð0:95; 0:01Þ 0.99

vw B ð0:50; 0:20Þ 0.18 /b B ð0:95; 0:01Þ 0.99

/p, regime-M N ð1:50; 0:20Þ 0.90 /i B ð0:95; 0:01Þ 0.99

/p, regime-F B ð0:50; 0:15Þ n/a /p B ð0:95; 0:01Þ 0.99

/y N ð0:125; 0:05Þ 0.10 /w B ð0:95; 0:01Þ 0.99

qr B ð0:50; 0:20Þ 0.71 /m B ð0:95; 0:01Þ 0.99

cg, regime-M N ð0:15; 0:10Þ 0.26 /g B ð0:95; 0:01Þ 0.99

cz, regime-M N ð0:15; 0:10Þ �0:11 /z B ð0:95; 0:01Þ 0.99

qg B ð0:50; 0:20Þ 0.98 x2
a

IG-2 ð2:00; 0:05Þ 0.10

qz, regime-F B ð0:50; 0:20Þ n/a x2
b

IG-2 ð2:00; 0:05Þ 0.10

qea B ð0:50; 0:20Þ 0.23 x2
i

IG-2 ð2:00; 0:05Þ 0.10

qeb B ð0:50; 0:20Þ 0.40 x2
p

IG-2 ð2:00; 0:05Þ 0.10

qei B ð0:50; 0:20Þ 0.69 x2
w

IG-2 ð2:00; 0:05Þ 0.10

qep B ð0:50; 0:20Þ 0.74 x2
m

IG-2 ð2:00; 0:05Þ 0.10

qew B ð0:50; 0:20Þ 0.18 x2
g

IG-2 ð2:00; 0:05Þ 0.10

qem B ð0:50; 0:15Þ 0.39 x2
z

IG-2 ð2:00; 0:05Þ 0.10

qeg B ð0:50; 0:15Þ 0.13

qez, regime-F B ð0:50; 0:15Þ n/a Fixed parameters

�L N ð468; 5:00Þ 481.12 Regime-M: qz ¼ 0:98, qez ¼ 0:80

�p N ð0:75; 0:25Þ 0.60 Regime-F: cg ¼ cz ¼ 0

Density (1, 2) refer to Gamma (G), Normal (N), Beta (B), and Student-tm (m ¼ 2:1 degrees of freedom)

distributions with means and standard deviations indicated in parentheses; Uniform (U) distribution with

lower and upper bounds; Inverse-Gamma type-1 (IG-1) distribution with parameters m and s, where

pðrÞ / r�m�1 exp ð� ms2

2r2Þ; Inverse-Gamma type-2 (IG-2) distribution with parameters a and b, where

pðx2Þ / ðx2Þ�a�1
exp ð� b

x2Þ. The effective priors are truncated at the boundary of the determinacy

region
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dlConst

lInflt

lFedFundst

2
64

3
75 ¼

cðQÞ

pðQÞ

pðQÞ þ rðQÞ þ cðQÞ

2
64

3
75þ

ĉt � ĉt�1 þ ẑt

p̂t
R̂t

2
64

3
75 ðB:7Þ

where ðcðQÞ; pðQÞ; rðQÞÞ are connected to the model’s steady states via

c ¼ 1 þ cðQÞ=100, b ¼ 1=ð1 þ rðQÞ=100Þ, and p ¼ 1 þ pðQÞ=100. Table 8 lists the

marginal prior distributions for the small-scale DSGE model parameters.

Table 6 Posterior summary of DSGE model parameters

Structural parameters Volatility parameters

Name Mean 90% HPD Ineff Name Mean 90% HPD Ineff

100c 0.22 [0.16, 0.28] 4.4 la �0.33 [-0.74, 0.08] 4.9

n 1.65 [0.77, 2.41] 12.3 lb 6.41 [5.73, 7.06] 69.0

h 0.99 [0.98, 0.99] 103.6 li �0.93 [-1.56, -0.35] 5.8

aG �0.09 [-0.19, -0.00] 5.2 lp �5.55 [-6.02, -5.04] 9.9

w 0.20 [0.11, 0.29] 9.0 lw �3.63 [-4.27, -2.98] 13.7

s 7.35 [5.14, 9.57] 6.2 lm �4.59 [-5.46, -3.76] 2.7

xp 0.91 [0.89, 0.94] 20.9 lg 0.79 [0.45, 1.18] 5.1

xw 0.84 [0.79, 0.89] 13.6 lz 1.78 [1.09, 2.46] 43.0

vp 0.09 [0.01, 0.16] 6.3 /a 0.95 [0.94, 0.97] 2.0

vw 0.07 [0.02, 0.11] 3.4 /b 0.95 [0.93, 0.96] 2.0

/p 1.00 [0.71, 1.31] 20.6 /i 0.95 [0.94, 0.97] 1.7

/y 0.17 [0.13, 0.22] 7.2 /p 0.95 [0.93, 0.97] 1.9

qr 0.76 [0.70, 0.82] 15.7 /w 0.95 [0.93, 0.97] 1.7

cg 0.27 [0.16, 0.37] 17.8 /m 0.95 [0.94, 0.97] 2.0

cz �0.07 [-0.20, 0.07] 39.9 /g 0.95 [0.93, 0.96] 2.3

qg 0.98 [0.97, 0.99] 12.0 /z 0.95 [0.93, 0.97] 2.0

qea 0.24 [0.12, 0.35] 3.5 x2
a

0.02 [0.01, 0.04] 15.0

qeb 0.38 [0.26, 0.50] 4.5 x2
b

0.02 [0.01, 0.04] 14.1

qei 0.64 [0.54, 0.73] 15.1 x2
i

0.05 [0.01, 0.10] 13.1

qep 0.74 [0.66, 0.80] 24.0 x2
p

0.03 [0.01, 0.06] 8.7

qew 0.45 [0.35, 0.58] 31.1 x2
w

0.05 [0.01, 0.08] 12.6

qem 0.57 [0.46, 0.68] 16.1 x2
m

0.10 [0.03, 0.17] 7.5

qeg 0.06 [0.01, 0.11] 3.9 x2
g

0.02 [0.01, 0.03] 24.9

�L 474.43 [473.31, 475.50] 23.9 x2
z

0.03 [0.01, 0.05] 19.2

�p 0.27 [0.00, 0.47] 3.4

The posterior means and 90% highest probability density (HPD) intervals are computed using 10, 000

posterior draws from the TaRB-MH algorithm. The estimated model has regime-M in place and Student-t
shocks with m ¼ 5 degrees of freedom
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Appendix C: Practical Guide

The subfolder user/ltw17 contains the following files for the Leeper-Traum-

Walker model, which are extensively annotated and can be modified, as needed, for

alternative model specifications:

• user_parvar.m—defines the parameters, priors, variables, shock innova-

tions, forecast errors, and observable variables.

• user_mod.m—defines the model and measurement equations.

• user_ssp.m—defines the steady state, implied, and/or fixed parameters.

• user_svp.m—defines the stochastic volatility parameters.

• data.txt—prepared in matrix form where each row corresponds to the

observations for a given period.

Our MATLAB toolkit is readily deployed. Once the user supplies the above

model and data files, the posterior distribution, marginal likelihood, and predictive

distributions (and other quantities) are computed via the single function, tarb.m,

as will be illustrated below. A printed summary of the results will be recorded in the

MATLAB diary file mylog.out, which is saved to the subfolder user/ltw17.

Table 7 True values for DSGE

model parameters
Name Regime-M Regime-F Name Regime-M Regime-F

100c 0.34 0.27 qea 0.23 0.30

n 1.78 2.25 qeb 0.47 0.22

h 0.96 0.96 qei 0.76 0.47

aG �0.24 �0.38 qep 0.48 0.61

w 0.35 0.31 qew 0.36 0.20

s 7.08 3.47 qem 0.52 0.87

xp 0.94 0.95 qeg 0.16 0.29

xw 0.81 0.74 qez 0.80 0.90

vp 0.21 0.11 100ra 0.80 1.18

vw 0.19 0.06 100rb 14.54 16.95

/p 1.34 0.19 100ri 0.44 1.30

/y 0.16 0.21 100rp 0.09 0.13

qr 0.79 0.37 100rw 0.27 0.23

cg 0.25 0 100rm 0.15 0.21

cz �0.06 0 100rg 1.63 2.05

qg 0.97 0.95 100rz 3.57 0.78

qz 0.98 0.97

�L 470.67 468.98

�p 0.70 0.75

The DGPs under regimes M and F correspond to their post-Volcker

(1955:Q1–1979:Q4) and pre-Volcker (1982:Q1–2007:Q4) estimates

reported in Leeper et al. (2017), respectively
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1. The prior sampling is implemented through the following block of code. The

sampling results will be stored in the MATLAB data file tarb_prior.mat,

which is saved to the subfolder user/ltw17.

2. The posterior sampling is implemented in the following block of code. The

estimation results will be stored in the MATLAB data file tarb_full.mat,

which is saved to the subfolder user/ltw17.

Fig. 8 Autocorrelation function of each structural parameter. Notes: Red horizontal lines correspond to
an autocorrelation of 0.1
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3. The marginal likelihood estimation is implemented in the following block of

code. The estimation results will be stored in the MATLAB data file

tarb_reduce.mat, which is saved to the subfolder user/ltw17.

4. Sampling the predictive distribution is specified in the following block of code.

Fig. 9 Autocorrelation function of each volatility parameter. Notes: See Fig. 8
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Fig. 10 Marginal prior and posterior distributions of each structural parameter. Notes: Each panel
compares the prior (red dashed line) with the posterior (shaded area). Vertical lines denote the true
parameter values. The kernel smoothed posterior densities are estimated using 10, 000 TaRB-MH draws
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Fig. 11 Stochastic volatility of each shock innovation. Notes: Each panel compares the model’s estimated
log-variances with their true values (red solid line). Blue dashed lines denote median estimates, while
shaded areas delineate 90% highest posterior density bands
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