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a b s t r a c t

The paper is devoted to exploring the complex dynamics of a Cournot–Bertrand model,
where one agent chooses quantity and the other chooses price. A nonlinear discrete
system is built to illustrate the game model with bounded rationality. Theoretically,
the local and global stability of equilibrium are investigated. The simulation reveals
that Flip and Neimark–Sacker bifurcation phenomena occur when the adjustment speed
of one firm increases through different boundary curves. Therefore three different
chaotic attractors are presented. The standard Logistic mapping is applied to analyze
the dynamics of the system on invariant axes. The critical curves classify the number of
preimage of the quantity or price. Besides, simulations give more intuitive results: the
cycle attractor, chaotic attractor and the basin of attraction with ‘‘holes’’ are given.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The oligopoly is a market organization between perfect competition and monopoly. Cournot model was the first
uopoly model proposed in 1838 [1]. In this model, both companies sell homogeneous goods and compete for quantity.
hile sometimes firms take a price decision. In a Bertrand model, when both players’ price was equated with their
arginal cost, the Bertrand equilibrium was produced [2]. It means that the firms’ long-term profits are zero, which is a
onclusion of the perfect market. The Stackelberg model described a two-stage game, where one leader moved first and
ll other followers moved after him [3].
In game theory, Nash equilibrium is a traditional core concept. While in recent years, game model combined with chaos

heory is applied to analyze the stability region of the equilibrium. This topic attracts more scholars’ concern. The dynamics
f duopoly game was investigated with incomplete rational players [4–6]. Under the assumption of naïve rationality,
daptive expectation, bounded rationality, bounded rationality with delay and local monopolistic approximation, the
tability region could be enlarged by the bounded rationality with delay [7,8]. In classical Cournot, Bertrand and
tackelberg models, the equilibrium eventually entered chaos via bifurcation which was caused by the adjustment speed
f output or price [9–11].
Generally, quantity and price competition coexist in a dynamic economy system. Besides classical game models,

he Cournot–Bertrand mixed model was proposed. Singh and Vives [12] analyzed the duality of price and quantity in
ifferentiated duopoly. They showed that, under specific assumptions about the cost (i.e., zero fixed cost and constant
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arginal cost) the Cournot–Bertrand ‘‘hybrid’’ competition cannot endogenously prevail. Tremblay and Tremblay [13]
stablished a static Cournot–Bertrand model for oligopolistic markets with product differentiation. Their theoretical
nalysis suggested that sufficient product differentiation was a necessary condition to ensure the equilibrium of the
wo types of products, and only Cournot-type firm survived when there was no product differentiation. Naimzada and
ramontana [14] adopted adaptive adjustments and generalized the static Cournot–Bertrand model to the dynamic
ournot–Bertrand model. They pointed out that the adaptive adjustment mechanism can lead to the instability of Nash
quilibrium. Semenov and Tondji [15] compared the equilibrium, consumer surplus and social welfare in Cournot and
ertrand model. Tremblay and Tremblay’s [16] work is the review of Cournot–Bertrand model, the development and
ontribution of the model.
The above researches on Cournot–Bertrand games mainly focused on theoretical analysis. Some scholars have studied

he local stability properties of equilibrium, and the results of numerical simulations have verified the theoretical results.
a et al. [17] established a Cournot–Bertrand model with market share preference. The instability had opposite effects on

irms with quantity and price decision. The stability region of Cournot–Bertrand model was bigger than that of Cournot
r Bertrand system under the same conditions [18,19]. The equilibria of Cournot, Bertrand, and Cournot–Bertrand model
ere compared [20]. Our work extends the work of these literature, and along this direction, the gradient adjustment
echanism is used to analyze the local and global stability properties in Cournot–Bertrand type game models. The
tability region of the equilibrium is presented. Flip and Neimark–Sacker bifurcation occur when the parameter exceeds
he boundary of the stability region. The Logistic mapping is used to analyze the dynamics property of the Cournot–
ertrand model in invariant axes. We divide several regions, each with the same number of preimages. It is convenient
or finding different basins of attraction.

In this paper, the gradient adjustment mechanism is adopted to establish a dynamic Cournot–Bertrand model, and
detailed theoretical analysis and numerical simulation are carried out on the stability of the attractor, and a more
omplex stable region of the Nash equilibrium is given. The model in this paper is based on a more general consumer
tility function. To make the conclusion of the article more economically meaningful, we have introduced a feasible set
f consumer strategies. Combined with the feasible set of strategies, the structure of the attractor’s domain of attraction
s analyzed from the perspectives of theory and numerical simulation.

A Cournot–Bertrand model with linear cost is considered. The assumption of vertical differentiation products is to avoid
hat the market share is occupied by the firm which has a lower price. The local and global stability of the dynamic game
odel are analyzed. In Section 2, the Nash equilibrium of the static duopoly Cournot–Bertrand model is investigated. In
ection 3, the two firms have the same bounded rationality. The local stability of the dynamic Cournot–Bertrand model is
nalyzed. In Section 4, the theoretical results of Section 3 are verified by the simulation. In Section 5, the theoretical result
f global stability of the dynamic Cournot–Bertrand model is concluded. In Section 6, we give the numerical simulation
f Section 5. In Section 7, the conclusion is presented.

. The Nash equilibrium of the static duopoly Cournot–Bertrand model

In a duopoly market, two firms provide two products with vertical differentiation, whose quantities are qi, i = 1, 2.
The representative consumer has the quadratic utility function, where the utility function is more general than that of
Andaluz and Jarne [21]:

U(q1, q2) = α1q1 + α2q2 − 1/2(β1q12 + 2rq1q2 + β2q22),

where the parameters are satisfied:

αi, βi > 0, β1β2 − r2 > 0, αiβj − rαj > 0, i, j = 1, 2, i ̸= j (1)

Consumers choose pi (i = 1,2) according to pi = ∂U/∂qi. Therefore the inverse demand function is{
p1 = α1 − β1q1 − rq2

p2 = α2 − β2q2 − rq1
(2)

αi characterizes the price cap of product i when q1 = 0, q2 = 0. The bigger αi is, the higher the welcome level
f product i. βi means the effect of the variation of qi on pi. r describes the effect of the variation of qj on pi. r is the

substitution parameter of the two products which measures the substitution ability. r > 0, r = 0, r < 0 represents
the substitution, independence and complementation relationship between two products, respectively. Especially, when
α1 = α2, β1 = β2 = r , in this situation, homogeneous products with completely substitutable are obtained. Assuming
β1β2 − r2 > 0, that is the products have differentiation.

Refer to Andaluz and Jarne [21], we have the transformation as follows:

σ = β1β2 − r2, ai = (αiβj − αjr)/σ , bi = βj/σ , c = r/σ , i, j = 1, 2, i ̸= j (3)

The demand function is rewritten as{
q1 = a1 − b1p1 + cp2

(2′)

q2 = a2 − b2p2 + cp1

2



Y. Yu Journal of Computational and Applied Mathematics 413 (2022) 114399

w
o

t

t

here ai is the demand cap of product i, bi denotes the effect of variation of pion qi, c represents the effect of variation
f pi on qj.
We have the transformation as follows:

δ′
= b1b2 − c2, αi = (aibj + ajc)/δ′, βj = bj/δ′, r = c/δ′, i, j = 1, 2, i ̸= j (3′)

Then the inverse demand function (2) transforms into the demand function (2′).
It is assumed that the marginal cost of firm i is mi > 0, replace αi − mi with αi, replace ai − bimi + cmj with ai, thus

he two firms have the profit function with the same form: πi = piqi, i = 1, 2.
In Cournot–Bertrand model, firm 1 chooses q1, firm 2 chooses p2, from the first formula of demand function (2′) and

he second formula of demand function (2), we have

p1 = (a1 − q1 + cp2)/b1

q2 = (α2 − rq1 − p2)/β2

Since p1 ≥ 0, q2 ≥ 0, the strategy combination (q1, p2) satisfies the feasible set:

Ω = {q1 ≥ 0, p2 ≥ 0 |a1 − q1 + cp2 ≥ 0, α2 − rq1 − p2 ≥ 0 } (4)

where (p1, q2) satisfies⎧⎪⎨⎪⎩
q1 − cp2 ≤ a1

rq1 + p2 ≤ α2

q1 ≥ 0, p2 ≥ 0

For the fixed p2, firm 1 chooses q1 to maximize π1(q1, p2), that is solving the optimization problems:

max
q1

π1 = p1q1 = (a1 − q1 + cp2)q1/b1

The marginal profit function of firm 1 is

∂π1/∂q1 = (a1 + cp2 − 2q1)/b1 (5)

For the fixed q1, firm 2 chooses p2 to maximize π2(q1, p2), that is solving the optimization problems:

max
p2

π2 = p2q2 = (α2 − rq1 − p2)p2/β2

The marginal profit function of firm 2 is

∂π2/∂p2 = (α2 − rq1 − 2p2)/β2 (5′)

Definition. q1 and p2, ai and αj, c and −r are called duality variables. One expression with variables which are replaced
by duality variables could become another expression. Both expressions are dual.

The two dual expressions are recorded as (·) and (·)′.
Please note that αi is αi − mi(i = 1, 2), p2 is p2 − m2 actually.
The Nash equilibrium of the static Cournot–Bertrand is:{

q1∗
= (2a1 + cα2)/(4 + cr)

p2∗
= (2α2 − ra1)/(4 + cr)

(6)

where (q1∗, p2∗) ∈ Ω .
From formula (6), the effect of variation of some parameters on Cournot–Bertrand Nash equilibrium is concluded:
(1) When a1 increases, q1∗ increases, for ai = ai − bimi + cmj, the product 1 is more popular with a lower the cost. The

stronger the influence of price on the output of firm 1, the greater the equilibrium output of firm 1.
(2) The bigger α2 is, if c > 0, that is the two products are alternatives, the bigger q1∗ is; the bigger α2 is, if c < 0, that

is the two products are complements, the smaller q1∗ is. Because α2 is the price cap of p2.
(3) The bigger α2 is, the bigger p2∗ is.
(4) The bigger a1 is, if r > 0, that is the two products are alternatives, the smaller p2∗ is; the bigger a1 is, if r > 0, that

is the two products are complements, the bigger p2∗ is.

3. The local stability of equilibrium of the dynamic Cournot–Bertrand model with bounded rationality

In the static Cournot–Bertrand model, using Nash equilibrium to predict game results requires participants to have a
high degree of rationality and information conditions about the market, which is difficult to achieve in the real economic
3
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nvironment. A more realistic condition is that participants only have limited rationality and limited information about the
arket. Under this more realistic condition, it is assumed that firms adjust their output and price dynamically through a
radient adjustment mechanism. Just like the importance of Nash equilibrium to static games, attractors play an important
ole in dynamic games. We examine the conditions of Nash equilibrium in Cournot–Bertrand model by gradual adjustment
echanism and the stability of other attractors.
In the dynamic Cournot–Bertrand model, firm 1 can only predict the gradient of profit with respect to quantity which

s the marginal profit, no other information. When the marginal value which is expected is positive, firm 1 will increase
he price of next period; otherwise it will reduce the price of next period. Therefore the following dynamic system can
e used to describe the dynamic trajectory of the economic operation.

Tc−b :

{
q1′

= q1 + v1q1(a1 + cp2 − 2q1)/b1

p2′
= p2 + v2p2(α2 − rq1 − 2p2)/β2

(7)

where v1 > 0 is firm 1’s adjustment speed of quantity, v2 > 0 is firm 2’s adjustment speed of price.
The fixed points of the mapping Tc−b can be solved by the algebraic equations:{

q1(a1 + cp2 − 2q1)/b1 = 0

p1(α2 − rq1 − 2p2)/β2 = 0

They are E0 = (0, 0), E1 = (a1/2, 0), E2 = (0, α2/2), E∗ = (q1∗, q2∗). Where E0, E1, E2 are boundary equilibria, E∗ is
ash equilibrium. q1∗, q2∗ are given by formula (6).
To discuss the asymptotic stability of the fixed points, the characteristic roots of Jacobian matrix J(q1, q2) of the

apping Tc−b at Ei(i = 0, 1, 2,∗ ) are calculated.

J(q1, p2) =

[
1 + v1(a1 + cp2 − 4q1)/b1 v1q1c/b1

−v2p2r/β2 1 + v2(α2 − rq1 − 4p2)/β2

]
(8)

From J(E0) =

[
1 + v1a1/b1 0

0 1 + v2α2/β2

]
, the two characteristic roots of J(E0) are λ1 = 1 + v1a1/b1 > 1,

λ2 = 1 + v2α2/β2 > 1, therefore E0 is repellent, that is the trajectory of the point starting near from E0 moves away
from E0 as time increases.

From J(E1) =

[
1 − v1a1/b1 v1a1c/2b1

0 1 + v2(α2 − ra1/2)/β2

]
, J(E1) has one characteristic root λ1 = 1 + v2(α2 − ra1/2)/β2,

from the transformation (3′), (α2 − ra1/2)/β2 = (2a2b1 + a1c)/2δ′β2 > 0, therefore λ1 > 1. The other characteristic
root λ2 = 1 − v1a1/b1 < 1. When v1 < 2b1/a1, |λ2| < 1, E1 is a saddle point. E1 attracts along the horizontal
direction and repels along the eigenvector direction of λ1. When v1 > 2b1/a1, E1 is a repellent point. Similarly, when
v2 < 2β2/α2, E2 is also a saddle point. E2 attracts along the vertical direction and repels along the eigenvector direction
of λ1

′(λ1
′
= 1 + v1(a1 + cα2/2)/b1). When v2 > 2β2/α2, E2 is a repellent point.

The locally asymptotic stability of Nash equilibrium E∗ is analyzed in the following discussion. From the expression of
E∗ and formula (8), the Jacobian matrix of the mapping Tc−b at E∗ is

J(E∗) =

[
1 − 2v1q1∗/b1 v1cq1∗/b1

−v2rp2∗/β2 1 − 2v2p2∗/β2

]
For convenience, let x = v1q1∗/b1, y = v2p2∗/β2, we have

J(E∗) =

[
1 − 2x cx

−ry 1 − 2y

]
≜ J∗

The trace of J∗ is T = 2 − 2x − 2y. The determinant of J∗ is D = (1 − 2x)(1 − 2y) + crxy = T − 1 + wxy, where
w = 4 + cr > 4.

The Jury’s condition of stability of E∗ is⎧⎪⎨⎪⎩
(1) 1 − T + D > 0

(2) 1 + T + D > 0

(3)D < 1

First, 1 − T + D = wxy > 0, therefore the orbit of the mapping Tc−b will not produce transcritical bifurcation.
Second, the condition (2) 1 + T + D = 4 − 4x − 4y + wxy > 0, which is equivalent to y(4 − wx) < 4(1 − x).
Let x = w/4, when x < x, y < (4(1− x))/(4−wx) ≜ F (x). When x > x, y > F (x). Since F ′(x) = 4(w − 4)/(4−wx)2 > 0,

F (x) is increasing monotonically. It is a hyperbola whose vertical and horizontal asymptote is 4/w.
4
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Fig. 1. The stability region S of E∗ .

At last, the condition (3) is equivalent to −2x − 2y + xyw < 0, that is y(xw − 2) < 2x. Let x̃ = 2/w, therefore when
x < x̃, y > 2x/(xw − 2) ≜ N(x). When x > x̃, y < N(x). N(x) is decreasing monotonically. It is a hyperbola whose vertical
and horizontal asymptote is 2/w.

From Jury’s condition, the stability region S of E∗ is surrounded by two axes, F (x) and N(x), which satisfies
when 0 < x < x−, then 0 < y < F (x),
when x− < x < 1, then 0 < y < N(x),
when 1 < x < x+, then F (x) < y < N(x),
where x±

= (w ±
√

w(w − 4))/w is the intersection of F (x) and N(x).
From x = v1q1∗/b1, y = v2p2∗/β2, F (x) and N(x), we have

F (v1) = 4β2(1 − v1q1∗/b1)/(p2∗(4 − (4 + cr)v1q1∗/b1)),
N(v1) = 2β2(v1q1∗/b1)/(p2∗((4 + cr)v1q1∗/b1 − 2)).

Easy to know, F (v1) is increasing monotonically, with vertical asymptote v1 =
4

(4+rc)
b1
q1∗ , horizontal asymptote v2 =

4β2
p2∗

1
(4+rc) . N(v1) is increasing monotonically, with vertical asymptote v1 =

2
(4+rc)

b1
q1∗ , horizontal asymptote v2 =

2β2
p2∗

1
(4+rc) .

In the v1 − v2 coordinate system, the stability region satisfies
when 0 < v1 < v−

1 , then 0 < v2 < F (v1);
when v−

1 < v1 < b1/q1∗, then 0 < v2 < N(v1);
when b1/q1∗ < v1 < v+, then F (v1) < v2 < N(v1).
Where v±

= (1 ±

√
cr

4+cr )b1/q1
∗ (see Fig. 1).

Based on the above analysis, two following positions are concluded:

Proposition 1. In the dynamic Cournot–Bertrand model, the boundary equilibrium E0 is repellent. When 0 < v1 < 2b1/a1,
E1 = (a1/2, 0) is a saddle point; when v1 > 2b1/a1, E1 is repellent. When 0 < v2 < 2β2/α2, E2 = (0, α2/2) is a saddle point;
when v2 > 2β2/α2, E2 is repellent. When (v1, v2) is in the stability region S, the Nash equilibrium E∗ is locally asymptotically
stable.

Proposition 2. When (v1, v2) is in the stability region S, for the fixed 0 < v1 < v−, when v2 increases, the trajectory of
the mapping Tc−b is gradually adjusted to reach the Cournot–Bertrand Nash equilibrium E∗, which is the only attractor. Then
through Flip bifurcation, E∗ loses the stability. When v− < v1 < b1/q1∗, the trajectory of the mapping Tc−b is gradually adjusted
to reach the Cournot–Bertrand Nash equilibrium E∗, which is the only attractor. Then through Neimark–Sacker bifurcation, E∗

loses the stability. When b1/q1∗ < v1 < v+, the trajectory of the mapping Tc−b experiences Flip bifurcation to Cournot–Bertrand
Nash equilibrium. Then as v2 increases, through Neimark–Sacker bifurcation, E∗ loses the stability.

When (v1, v2) is not in the stability region S, numerical simulation is used to illustrate the dynamic trajectory of the
mapping Tc−b.

The economic implication of the above propositions is that when the adjustment speed of each enterprise is not too
high, the static Nash equilibrium can be gradually realized through the gradient adjustment mechanism. Even if the
participants do not have complete information about the market and are not completely rational, Nash equilibrium can be
5



Y. Yu Journal of Computational and Applied Mathematics 413 (2022) 114399

u
w

4

s

Fig. 2. Local asymptotical stability region S of E∗ in Cournot–Bertrand model.

Fig. 3. Flip bifurcation of v2 in Cournot–Bertrand model (v1 = 0.3).

sed to predict the outcome of the game. When the adjustment speed of the participants is larger, the Nash equilibrium
ill lose its stability. At this time, the Nash equilibrium cannot be used to predict the outcome of the game.

. The numerical simulation of the local stability of equilibrium in the dynamic Cournot–Bertrand model

In this section, the local stability of equilibrium in a dynamic Cournot–Bertrand model is investigated by numerical
imulation. The parameters are given as follows: β1 = 0.8, β2 = 0.6, α1 = 5, α2 = 4, r = 0.5. Thus a1 = 4.3478,
a2 = 3.0435, b1 = 2.6087, b2 = 3.4782, c = 2.1739, q1∗

= 3.4188, p2∗
= 1.1453.

As Fig. 2 shows, the dash area is the local asymptotical stability region S of E∗ in Cournot–Bertrand model. When
0 < v1 < 0.41, the system experiences equilibrium E∗ to Flip bifurcation. When 0.41 < v1 < 0.763, the system
experiences equilibrium E∗ to Neimark–Sacker bifurcation. When 0.763 < v1 < 1.116, the system experiences Flip
bifurcation, equilibrium E∗ to Neimark–Sacker bifurcation. Therefore there are three chaos phenomena from Figs. 3 to 11.

When v1 is fixed (v1 = 0.3), the Flip bifurcation of v2 is shown in Fig. 3. When the largest Lyapunov exponent of v2 is
positive in Fig. 4 (v2 > 0.74), there is a chaos in Fig. 3. The strange attractors for v1 = 0.3, v2 = 0.76 is drawn in Fig. 5.

When v1 is fixed (v1 = 0.55), the Neimark–Sacker bifurcation of v2 is shown in Fig. 6. When the largest Lyapunov
exponent of v2 is positive in Fig. 7 (v2 > 0.44), there is a chaos in Fig. 6. The strange attractors for v1 = 0.55, v2 = 0.45
is drawn in Fig. 8.
6
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Fig. 4. Lyapunov exponent of v2 in Cournot–Bertrand model.

Fig. 5. Strange attractors for v1 = 0.3, v2 = 0.76 in Cournot–Bertrand model.

When v1 is fixed (v1 = 0.95), the Flip to Neimark–Sacker bifurcation of v2 is shown in Fig. 9. When the largest Lyapunov
xponent of v2 is positive in Fig. 10 (0 < v2 < 0.01, v2 > 0.31), there is a chaos in Fig. 9. The strange attractors for
1 = 0.95, v2 = 0.34 is drawn in Fig. 11.
The trajectories of three strange attractors are very different, which present rich and colorful dynamics phenomena.

. The global stability of equilibrium of the dynamic Cournot–Bertrand model

In the previous research on the system stability of the dynamic duopoly games, most scholars have analyzed the local
tability of the attractors. However, in recent references, the global stability of the attractors attracts more concern. In this
aper, the mapping Tc−b which is given by the evolution Eq. (7) of the dynamic Cournot–Bertrand model is an irreversible
apping, that is for the fixed q1 and p2, their images q1′ and p2′ are determined uniquely by formula (7). However, for
point (q1′, p2′) in the phase space, their preimages (q1, p2) cannot be determined uniquely. For the global stability of
ttractors of the irreversible mapping, invariant set, critical curves and basin of attraction are needed.
7
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Fig. 6. Neimark–Sacker bifurcation of v2 in Cournot–Bertrand model (v1 = 0.55).

Fig. 7. Lyapunov exponent of v2 in Cournot–Bertrand model.

Fig. 8. Strange attractors for v1 = 0.55, v2 = 0.45 in Cournot–Bertrand model.
8
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Z

Fig. 9. Flip to Neimark–Sacker bifurcation of v2 in Cournot–Bertrand model (v1 = 0.95).

Fig. 10. Lyapunov exponent of v2 in Cournot–Bertrand model.

5.1. The dynamics of invariant axes in the dynamic Cournot–Bertrand model

Easy to know, for the mapping Tc−b, the vertical axis q1 = 0 and horizontal axis p2 = 0 are invariant sets. f1(q1)
is represented by the mapping Tc−b restricted to the horizontal axis p2 = 0. f2(p2) is represented by the mapping Tc−b
restricted to the vertical axis q1 = 0.

f1(q1) = q1 + v1q1(a1 − 2q1)/b1 = (1 + V1a1)q1(1 − 2V1q1/(1 + V1a1)), where V1 = v1/b1.
Let Z = 2V1q1/(1 + V1a1) or q1 = (1 + V1a1)Z/2V1. Thus f1(q1) is conjugated to the standard Logistic mapping

′
= µz(1 − z), where µ = 1 + a1V1.
We have dual conclusions as follows:
f2(p2) = p2 + v2p2(α2 − 2p2)/β2 = (1 + V2α2)p2(1 − 2V2p2/(1 + V2α2)), where V2 = v2/β2.
Let Z = 2V2p2/(1 + V2α2) or p2 = (1 + V2α2)Z/2V2. Thus f2(p2) is conjugated to the standard Logistic mapping

Z ′
= µz(1 − z), where µ = 1 + α2V2.
From the standard Logistic mapping, the properties of f1(q1) are concluded:

(a) When 0 < V1a1 < 2(⇔ 1 < µ < 3), the equilibrium E1 = (a1/2, 0) is the only attractor of asymptotic stability,
whose basin of attraction is B(E1) = (E0, A1), where A1 = ((1 + a1V1)/2V1, 0) (Z = 1 in conjugate transformation).
Considering the feasibility of (q , p ), the basin of attraction which has the economic meaning is B(E ) = (E , A )∩Ω .
1 2 1 0 1

9
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Fig. 11. Strange attractors for v1 = 0.95, v2 = 0.34 in Cournot–Bertrand model.

(b) At V1a1 = 2, the equilibrium E1 loses stability through Flip bifurcation, which is defined as (V1a1)0 = 2.
(c) When 2 < V1a1 <

√
6, f1(q1) has the only new attractor with a cycle of period 2 whose basin of attraction is still

(E0, A1) ∩ Ω , which is defined as (V1a1)1 =
√
6.

(d) At V1a1 =
√
6, the attractor of (c) loses stability through the bifurcation. Thus there is a sequence of bifurcations

(V1a1)n, n = 0, 1, 2, . . ., when (V1a1)n−1 < V1a1 < (V1a1)n, f1(q1) has the only stable attractor with a cycle of period
2n, whose basin of attraction is (E0, A1) ∩ Ω . Simultaneously, limn→∞(V1a1)n = (V1a1)∞ ≈ 2.5699456 · · ·

(e) When (V1a1)∞ < V1a1 < 3, f1(q1) has a chaotic attractor in [( (1+V1a1)3(3−V1a1)
32V1

, 0), ( (1+V1a1)2

8V1
, 0)] ∩ Ω .

(f) When V1a1 > 3, the trajectory of f1(q1) starting from [E0, A1] ∩ Ω diverges.

Similarly, the dynamic properties of f2(p2) are available.

(a)′ When 0 < V2α2 < 2(⇔ 1 < µ < 3), the equilibrium E2 = (0, α2/2) is the only attractor of asymptotic stability,
whose basin of attraction is B(E2) = (E0, A2) ∩ Ω , where A2 = (0, (1 + α2V2)/2V2).

(b)′ At V2α2 = 2, the equilibrium E2 loses stability through Flip bifurcation, which is defined as (V2α2)0 = 2.
(c)′ When 2 < V2α2 <

√
6, f2(p2) has the only new attractor with a cycle of period 2 whose basin of attraction is still

(E0, A2) ∩ Ω , which is defined as (V2α2)1 =
√
6.

(d)′ At V2α2 =
√
6, the attractor of (c)’ loses stability through the bifurcation. A sequence of bifurcations (V2α2)n, n =

0, 1, 2, . . ., when (V2α2)n−1 < V2α2 < (V2α2)n, f2(p2) has the only stable attractor with a cycle of period 2n, whose
basin of attraction is (E0, A2) ∩ Ω . Simultaneously, limn→∞(V2α2)n = (V2α2)∞ ≈ 2.5699456 · · ·

(e)′ When (V2α2)∞ < V2α2 < 3, f2(p2) has a chaotic attractor in [0, ( (1+V2α2)3(3−V2α2)
32V2

), (0, (1+V2α2)2

8V2
)] ∩ Ω .

(f)′ When V2α2 > 3, the trajectory of f2(p2) starting from [E0, A2] ∩ Ω diverges.

.2. The critical curves

The critical curve of two-dimensional map is the extension of the critical value (extremum) of one-dimensional map.
t is an important tool to analyze the global stability of the attractor in two-dimensional irreversible mapping. Although
he preimages of all points in the phase plane of the two-dimensional non-invertible mapping cannot be calculate, we can
ivide the phase plane into different regions by the critical curves, which makes the point (q1, p2) in the same region has
he same number of preimages. The critical curve LC is the boundary curve between two regions. To obtain the critical
urve LC of two-dimensional map, the preimage of rank-1 LC−1 should be first determined, which is the extension of
ritical point (extremum) in one-dimensional map. For a differentiable two-dimensional map, the determinant of Jacobian
atrix is 0, that is LC−1 ⊆ {(q1, p2) ∈ R2 |DetJ(q1, p2) = 0 }. For the mapping Tc−b, LC−1 satisfies:

(b1 + v1a1)(β2 + v2α2) − (4v1β2 + b1v2r + v1v2(4α2 + a1r))q1 − (4b1v2 − β2v1c

+v1v2(4a1 − α2c))p2 + 16v1v2q1p2 + 4v1v2rq12 − 4v1v2cp22 = 0
(9)

It is generally a hyperbola with two branches LCa
−1 and LCb

−1. Thus the critical curve of Tc−b is LC = Tc−b(LC−1) =

(LCa ) ∪ T (LCb ) ≜ LCa
∪ LCb.
c−b −1 c−b −1

10
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The expression of LC could not be available, however the intersection point coordinates of LC and q1 = 0, LC and
2 = 0 could be calculated.
For a point (0, x) on the p2 axis, 0 < x <

1+v2α2
2v2

. Where 1+v2α2
2v2

is the ordinate of A2. Simultaneously A2 is a preimage

of E0. From the mapping Tc−b in formula (7), the preimage of (0, x) is solved by the equations:{
0 = q1(1 + V1(a1 + cp2 − 2q1)) (a)

x = (1 + V2α2)p2 − 2V2p22 − rV2q1p2 (b)
(10)

The solution of (10)(a) satisfies q1 = 0 or 1 + V1(a1 + cp2 − 2q1) = 0, which is equivalent to

q1 = (1 + V1(a1 + cp2))/2V1 (11)

For convenience, the line represented by formula (11) is denoted as w2
−1, the line segment [E0A2] is denoted as w2.

Similarly, for the point (x, 0) on p2 = 0, (0 < x < (1 + v1a1)/2v1), the preimage of (x, 0) is solved by the equations:{
p2(1 + V2(α2 − rq1 − 2p2)) = 0 (a)

(1 + V1a1)q1 − 2V1q12 + cV1p2q1 = x (b)
(12)

The solution of (12)(a) satisfies p2 = 0 or 1 + V2(α2 − rq1 − 2p2) = 0, which is equivalent to

p2 = 1 + V2(α2 − rq1)/2V2 (13)

For convenience, the line represented by formula (13) is denoted as w1
−1, the line segment [E0, A1] is denoted as w1.

With respect to the critical curve of the mapping, we can get the following propositions.

Proposition 3. The two intersections of the critical curve LC of the mapping Tc−b and p2-axis are p2(1), p2(2), respectively. The
two intersections of the critical curve LC of the mapping Tc−b and q1-axis are q1(1), q1(2), respectively.

For the point (x, 0) on q1-axis (0 < x < (1 + v1a1)/a1v1), when x > max
{
q1(1), q1(2)

}
, (x, 0) has no preimage. When

min
{
q1(1), q1(2)

}
< x < max

{
q1(1), q1(2)

}
, (x, 0) has two preimages. When x < min

{
q1(1), q1(2)

}
, (x, 0) has four preimages.

Proof. When q1 = 0, from formula (10)(b), the quadratic equation of p2 is 2V2p22 − (1 + V2α2)p2 + x = 0. When
the discriminant ∆ = (1 + V2α2)2 − 8V2x > 0, the two roots of the equation are p2+

= (1 + V2α2 +
√

∆)/4V2,
2
−

= (1 + V2α2 −
√

∆)/4V2, which illustrates the two preimages of (0, x) on q1 = 0 are (0, (1 + V2α2 +
√

∆)/4V2),
(0, (1 + V2α2 −

√
∆)/4V2).

When ∆ = 0, there is only one solution p2 = (1+ V2α2)/4V2, that is (0, x) has only one preimage (0, (1+ V2α2)/4V2).

When ∆ < 0, there is no solution or (0, x) has no preimage. While ∆
>

<
0 is equivalent to x

<

>
(1 + V2α2)2/8V2 =

β2 + v2α2)2/8v2β2 ≜ p2(1).
When q1 = (1+V1(a1 + cp2))/2V1, from formula (10)(b), the quadratic equation of p2 is (4+ cr)V2p22/2− (2V1 − rV2 +

1V2(2α2 − ra1)p2)/2V1 + x = 0. Its discriminant is ∆ = 2V1 − rV2 + V1V2(2α2 − ra1)2/4V2
2
− 2(4 + cr)V2x

>

<
0, which is

equivalent to

x
<

>
(2V1 − rV2 + V1V2(2α2 − ra1))2/8V1

2V2(4 + cr)

= 2β2v1 − rb1v2 + v1v2(2a1 + cα2)2/8β2v1
2v2(4 + cr)

≜ p2(2)

When p2 = 0, from formula (12)(b), the quadratic equation of q1 is 2V1q12 − (1 + V1a1)q1 + x = 0.

When the discriminant ∆ = (1+V1α1)2 −8V1x
>

<
0, there are two solutions q1±

= (1+V1a1 ±
√

∆)/4V1 or one solution

q1 = (1 + V1a1)/4V1, or no solution.

While ∆
>

<
0 is equivalent to x

<

>
(1 + V1a1)2/8V1 = (b1 + v1a1)2/8v1b1 ≜ q1(1).

When p2 = (1+V2(α2 − rq1))/2V2, from formula (12)(b), the quadratic equation of q1 is (4+ cr)V1q12/2− (2V2 + cV1 +

V1V2(2a1 + cα2)q1)/2V2 + x = 0. Its discriminant is ∆ = 2V2 + cV1 + V1V2(2a1 + cα2)2/4V2
2
− 2(4 + cr)V1x

>
0, which is
<

11
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quivalent to

x
<

>
(2V2 + cV1 + V1V2(2a1 + cα2))2/8V2

2V1(4 + cr)

= 2b1v2 + cβ2v1 + v1v2(2a1 + cα2)2/8b1v2
2v1(4 + cr)

≜ q1(2)

This completes the proof. □

The main function of Proposition 3 can be to divide the same number of preimage regions on the set of feasible
trategies of the game, and provide theoretical tools for the analysis of the global stability of attractors.

.3. The basin of attraction

For the global stability of the attractor A of the mapping Tc−b, it is mainly to determine the attraction structure of A.
hen the economic meaning of Tc−b is not considered, for Tc−b, the trajectory starting from the initial point far away from

the origin is divergent. In our opinion, Tc−b has an attractor of infinite point. Therefore, any boundary attractor of Tc−b
cannot be global attractor. If Tc−b has only one boundary attractor A, thus its basin of attraction B(A) and basin of attraction
B(∞) of infinite point are complementary. Their boundary of basin of attractions are the same, that is ∂B(∞) = ∂B(A). To
obtain ∂B(∞), since w1 = [E0, A1], w2 = [E0, A2], easy to know A1, A2 are the preimages of E0. The other two preimages
are itself and the intersection A3 of w1

−1 and w2
−1. From formula (11) and (13), the ordinate of A3 are

q1 = (cv1β2 + 2v2b1 + v1v2(2a1 + cα2))/v1v2(4 + cr),
p2 = (2v1β2 − rv2b1 + v1v2(2α2 − ra1))/v1v2(4 + cr).

E0A1A3A2 constitutes a quadrangle, whose sides A1A3 and A2A3 satisfy formula (11) and (13) respectively. The trajectory
starting from the outer point of the quadrangle is divergent, therefore the outer part of the quadrangle is contained in
B(∞). Since the transverse attraction of Tc−b is limited to [E0, A1] and [E0, A2], that is, the point inside the quadrangle
close to the coordinate axes is rejected by the above attractor (refer to 21). From Proposition 3, T−1

c−b(w1) = w1 ∪

[A2, A3], T−1
c−b(w2) = w2 ∪ [A1, A3]. From Bischi et al. [22]

∂B(∞) = (
∞

∪
n=0

T−n
c−b(w1)) ∪ (

∞

∪
n=0

T−n
c−b(w2)) (14)

When n = 0, Tc−b(w1) = w1, Tc−b(w2) = w2 in formula (14). The critical curve of max{q1(1), q1(2)} and max{p2(1), p2(2)}

is the separatrix of the region Z2 and Z0. The critical curve of min{q1(1), q1(2)} and min{p2(1), p2(2)} is the separatrix of the
region Z2 and Z4. Where Z0, Z2, Z4 represent the region’s preimage number are 0, 2, 4 in the phase space set, respectively.
Therefore when [A2, A3] ∪ [A1, A3] ⊆ Z0, the basin of attraction of the bounded attractor A of Tc−b is the internal of the
quadrangle E0A1A3A2, that is B(A) = int(E0A1A3A2).

If ([A1, A3] ∪ [A2, A3]) ∩ Z2 ̸= φor ([A1, A3] ∪ [A2, A3]) ∩ Z4 ̸= φ, B(∞) will be in the quadrangle E0A1A3A2 from formula
(14). It will destroy the connectivity of the basin of attraction B(A), which makes the basin of attraction B(A) create some
‘‘holes’’. If these ‘‘holes’’ are in the internal of Z2 and Z4, there will be more ‘‘holes’’.

When the economic meaning of the map Tc−b is considered, Tc−b will be constrained by the yield feasible Ω . Therefore
we only consider the dynamics of points in Ω .

When the initial point (q1, p2) ∈ Ω is in w2
−1or on the right of w2

−1, from formula (11), 1 + V1(a1 + cp2 − 2q1) ≤ 0.
From formula (7), q1′

= q1 + V1(a1 + cp2 − 2q1) ≤ 0, and q1′
= 0. If and only if the initial point (q1, p2) ∈ Ω ∩ w2

−1, since
q1′ < 0, which cause firm 1 to quit the market. Therefore q1′

= 0. The track from (q1, p2) is determined by f2(p2).
When the initial point (q1, p2) ∈ Ω is in w1

−1or above of w1
−1, from formula (13), 1 + V2(α2 − rq1 − 2p2) ≤ 0. From

formula (7), p2′
= p2 + V2p2(α2 − rq1 − 2p2) ≤ 0, and p2′

= 0. If and only if the initial point (q1, p2) ∈ Ω ∩ w1
−1, since

p2′ < 0, which cause firm 2 to quit the market. Therefore p2′
= 0. The track from (q1, p2) is determined by f1(q1).

When the initial point (q1, p2) ∈ Ω is on the right of w2
−1 and above of w1

−1, from formula (13) and (7), q1′
= 0 and

p2′
= 0. The track from (q1, p2) ∈ Ω will reach the origin.
Only when (q1, p2) ∈ Ω is in the quadrangle E0A1A3A2, the mapping from the initial point (q1′, p2′) can take a positive.
When the economic meaning is not considered, the initial point (q1, p2) ∈ Ω is outside the quadrangle E0A1A3A2, the

dynamic trajectories will enter the invariant axes, and their motion trajectories are determined by the dynamics on the
invariant axes. We need to redefine B(∞) :B(∞) = {(q1, p2) ∩ Ω

⏐⏐q1′
= 0, or p2′

= 0}.
The results could be still concluded: when ([A2, A3] ∪ [A1, A3]) ∩ Ω ⊆ Z0, if the initial point (q1, p2) ∈ int(E0A1A3A2),

hen B(A) = int(E0A1A3A2) ∩ Ω; when ([A1, A3] ∪ [A2, A3]) ∩ Z2 ∩ Ω ̸= φ or ([A1, A3] ∪ [A2, A3]) ∩ Z4 ∩ Ω ̸= φ, B(∞)
ill enter the interior of the quadrangle E0A1A3A2, which will destroy the connectivity of the attraction domain B(A) and
ause the attraction domain B(A) to produce some ‘‘holes’’.
12
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Fig. 12. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 0.6). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

Fig. 13. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 1). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

. The numerical simulation of the global stability of equilibrium in the dynamic Cournot–Bertrand model

The parameters remain the same: β1 = 0.8, β2 = 0.6, α1 = 5, α2 = 4, r = 0.5. Thus a1 = 4.3478, a2 = 3.0435,
1 = 2.6087, b2 = 3.4782, c = 2.1739, q1∗

= 3.4188, p2∗
= 1.1453. The intersection of the feasible set Ω and q1 axis is

4.3478,0); the intersection of the feasible set Ω and p2 axis is (0,4).
When v1 = v2 = 0.6, A1 = (4.3478, 0), A2 = (0, 2.5), A3 = (5.5555, 1.1111). The 22 period attractors are drawn in

Figs. 12, 14 and 16. When v1 = v2 = 1, A1 = (3.47825, 0), A2 = (0, 2.3), A3 = (4.7008, 1.1248). The strange attractors
are drawn in Figs. 13, 15 and 17, which are the same as Figs. 5, 8 and 11, respectively. The phase plane is divided into Z0,
Z2 and Z4. The connection of basin of attraction is broken and some ‘‘holes’’ are produced.

The simulations correspond to the results in Section 5.
13
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Fig. 14. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 0.6). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

Fig. 15. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 1). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

. Conclusion

In a Cournot–Bertrand model with products of vertical differentiation, the demand function is deduced from a quadratic
tility function. The comparative statics is used to analyze the effect of parameters on equilibrium. A dynamic Cournot–
ertrand game model with bounded rationality is considered. The local stability of the fixed points is investigated by Jury’s
ondition. The theoretical result of the stability region of equilibrium is given. With the increase of the adjustment speed
f quantity or price, Flip and Neimark–Sacker bifurcation occur when the adjustment speed passes through the boundary
f the stability region. The one-dimensional Logistic mapping is applied in studying the system dynamics property in
nvariant axes. The critical curve used to give dynamic trajectories on the invariant axes. The critical curve is an important
ool to divide the phase plane into several regions Z0, Z2 and Z4. Each region has the same number of preimage, which
s beneficial to find the structure of basin of attraction. More complicated chaotic conclusions are obtained by the global
tability analysis. Besides the theoretical studies, simulations give more intuitive results. The cycle attractor, chaotic
14
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Fig. 16. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 0.6). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

Fig. 17. Critical curves and basin of attraction in Cournot–Bertrand model (v1 = v2 = 1). The rectangle E0A1A3A2 represents equilibria. The feasible
et of meaningful area Ω is constrained by the four black lines.

ttractor and the basin of attraction with ‘‘holes’’ are presented. Simulation analysis presents undesirable complicated
henomena.
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