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A B S T R A C T

To deal with various nonlinear issues in real applications, a novel time-power based grey model is put forward.
However, in the original form of this model, the time-power parameter 𝛼 normally equals to an integer, and
then the analytical expression of the time response function will be obtained. Otherwise, if the parameter
𝛼 equals to a non-integer, one cannot obtain the concrete time response function for future estimations. This
situation may significantly restrict the applications of this grey model. To address such drawbacks, an optimized
version is designed in this work. In the proposed model, a simplified solution to the differential equation
is derived by using the definite integral technique. Furthermore, for improving accuracy, the time-power
parameter 𝛼 is optimized by utilizing the Particle Swarm Optimization algorithm based on the model parameter
packages. Subsequently, the efficacy and practicality of this simplified function have been verified by numerical
simulations and experimental studies. Moreover, the method of probability density prediction is employed for
verifying the reliability and stability of the proposed model for the first time when predicting the settlement of
the soft-clay subgrade on an expressway. The demonstration cases illustrate that the quantitative improvements
over forecasts of the proposed model are even more pronounced with a level accuracy of 2.29% and 1.19%
MAPE values in the fitted and predicted periods, respectively, which can significantly increase the predicting
accuracy by more than 10% with respect to the other benchmarks. Therefore, the new proposed model not only
has greater application fields and prospects but also achieves higher and more reliable predicting accuracy with
the optimal 𝛼 under the support of the Particle Swarm Optimization algorithm, compared with the competing
models.
. Introduction

The main purposes of modeling and forecasting time series are to
eveal the inherent law of a system and estimate its future trends, which
lays an essential role in decision-making (Zeng et al., 2019; Ma et al.,
020). Currently, modeling nonlinear issues has emerged as a hot topic
nd many methods have been proposed, such as statistical methods,
eural network algorithms, and grey prediction models (Xiao et al.,
017; Wang and Hao, 2016; Xiong et al., 2019; Zhou et al., 2021).
mong these models, the grey prediction models have attracted enor-
ous attention because of their excellent ability for dealing with system
rojections characterized by uncertainty and incomplete information
Deng, 1982; Wang et al., 2017; Liu and Zhang, 2019; Mao et al.,
020). Accordingly, grey prediction models have been widely used in
he economic, industrial, natural systems, and other fields (Wang, 2013;
a and Liu, 2018; Ding, 2019; Chen et al., 2020).
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As the most important branch of the grey models, the grey model
having one variable and one order, abbreviated as 𝐺𝑀(1, 1), is widely
used by many researchers (Zheng et al., 2018; Xiao and Duan, 2020).
Moreover, a range of studies have optimized this model from diverse
perspectives, which generally include the following aspects:

(1) Optimization of the background value and grey derivative. Xu
et al. (2017) modified the background and used this optimized model
for projections of China’s electricity demand. Li et al. (2011) used
the cubic spline function to optimize the background value and grey
derivative of the 𝐺𝑀(1, 1) model. The optimized model was applied
to the short-term power load modeling and obtained good results. Lin
et al. (2012) developed an improved artificial fish swarm algorithm
by minimizing the average relative errors to identify the parameters.
Additionally, to further improve a model’s accuracy, a rolling mecha-
nism is frequently used to build an optimized model. Evans (2014) gave
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another estimation method of the 𝐺𝑀(1, 1) and Verhulst model parame-
ters by using determinable coefficients. Applying the improved Verhulst
model to analyze the steel utilization efficiency in the UK, Evans found
that the new estimation method possessed accurate and reliable multi-
step prediction results. Although many works about optimizing the
background value of the GM(1,1) model have been performed, they
cannot change the situation that this grey model is still suitable to
model the homogeneous time sequences, which might strongly restrict
the application fields (Bezuglov and Comert, 2016; Ding et al., 2021a).

(2) Optimization of model parameters and time response function.
Zhao et al. (2012) incorporated the rolling mechanism into the hybrid
grey model with a differential evolution algorithm and found that the
novel model could significantly improve the forecasting precision in
comparison with benchmark models. Ding et al. (2018) introduced
the dynamic weighting coefficients. Simultaneously, these weight pa-
rameters were solved through the Artificial Intelligence Optimization
Algorithm. Nevertheless, it still existed a problem that the sum of the
cumulative sequence weight coefficient did not equal to one, which
meant that the normalization of the model needed to be improved.
Making the sum of error square minimum, Xie and Liu (2009) improved
the initial conditions of the 𝐷𝐺𝑀(1, 1) model, and the results showed
that the optimization model can effectively predict the society and
economic system. Xu et al. (2019) combined a new grey model with
a buffered rolling method to further improve forecasting performance.
This proposed model can capture the essential characteristics of a devel-
oping trend in comparison with conventional grey models. Moreover,
empirical results also demonstrate its superior performance over other
competitors. However, these improved models have little advantages
in describing nonlinear time sequences because they still possess linear
model structures (Ding and Li, 2021).

(3) Construction of new grey models. As the research methods
are more and more abundant and the system diversity is gradually
recognized, many grey prediction models have been designed for the
new characteristics of the system. Wu et al. (2019a,b) designed a
seasonal 𝐺𝑀(1, 1) model to describe the seasonal features of the pol-
lutants, such as NO2, PM2.5, and CO. Zhu et al. (2020) proposed
a self-adaptive grey fractional weighted model by introducing the
fractional weighted coefficients to design a novel initial condition.
Furthermore, this new model is employed for predicting Jiangsu’s
electricity demand in comparison with a range of benchmark models.
Zeng et al. (2020) designed a new grey Verhulst model by incorporating
a non-homogeneous exponential function, which enables the novel
model to solve various nonlinear problems with stronger adaptability.
The extended grey models mentioned above can deal time series with
various kinds of data characteristics, such as seasonality, volatility, and
complexity. However, the way to modify the GM models is expected to
make the optimized models more complicated, which may bring many
difficulties in estimating parameters (Comert et al., 2021).

(4) Extensions of 𝐺𝑀(1, 1) or modeling nonlinear sequences. For
the reason that a lot of non-linear time series exist in the real world,
proposing an effective forecasting technique is necessary for addressing
such predicting issues. Cui et al. (2013) proposed a new grey model,
named 𝑁𝐺𝑀(1, 1, 𝑘), according to the non-homogeneous exponential
law of real data. The experimental results showed that 𝑁𝐺𝑀(1, 1, 𝑘)
had good forecasting accuracy. For further improving its performance,
Liu et al. (2016), Tong et al. (2017), and Ding et al. (2017) modified the
background values of this model from different perspectives. Besides,
based on the idea of ‘‘in-between’’, Wu et al. (2015, 2014) proposed
a fractional-order accumulating generation operator for grey models,
which breaks the restrictions that the order of the grey accumulating
generation can only be an integer. Furthermore, to adapt to various
features of a system sequence, such as non-homogeneous and homo-
geneous exponential sequences, and dynamic sequences featured by
dynamic changing growth rate, Qian et al. (2012) initially proposed
the grey model having one variable, one order and 𝛼 time power,
namely 𝐺𝑀(1, 1, 𝑡𝛼), and analyzed the properties of the model with
2

different values of the parameter 𝛼. In general, diverse values of 𝛼
enable the grey model to simulate and predict different categories of
time sequences, such as the homogenous exponential sequence (Wu
et al., 2014; Zhou and Ding, 2021), non-homogenous exponential se-
quence (Cui et al., 2013; Ding et al., 2017), and a series featured by S
shape (Qian et al., 2012; Ding et al., 2021b). Thus, due to its enough
adaptive capability, this model has been widely used to solve various
kinds of problems. Subsequently, for further revealing the inherent
features of the 𝐺𝑀(1, 1, 𝑡𝛼) model, many researchers conducted studies
in different ways. Cui et al. (2016) measured the morbidity of this
model by using the technique named the spectrum condition number
of the matrix. He found that there exists no severe morbidity when
calibrating the 𝐺𝑀(1, 1, 𝑡𝛼) model. Wu et al. (2019a,b) modified the
modeling structure of the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model, and deter-
mine the optimal initial point by minimizing the target function. Then,
the efficacy and applicability were demonstrated in the experiments.
Guo et al. (2014) combined the self-memory mechanism with the
conventional 𝐺𝑀(1, 1, 𝑡𝛼) model for improving forecasting precision.
Guo et al. (2015) proposed a non-equidistance 𝐺𝑀(1, 1, 𝑡𝛼) model based
on the unequal interval sequences over time. She also discussed the
relationship between the parameter 𝛼 and the model’s curve, power
exponent, and the development coefficients.

In general, the 𝐺𝑀(1, 1, 𝑡𝛼) model is able to address non-linear
issues with good performance. However, it still has certain inherent
shortcomings that seriously slash the adaptability and applicability of
this model (Zeng et al., 2016; Liu and Xie, 2019). By analyzing the
mechanism of the 𝐺𝑀(1, 1, 𝑡𝛼) model, some findings can be obtained as
follows: when 𝛼 is an integer, one can get the analytic expression of
the time response function. Otherwise, because 𝛼 is not an integer and
the integrand does not exist the original function, the time response
function cannot be directly expressed by using the analytic formula
(explained in Section 2). Specifically, Qian et al. (2012) only provided
the time response functions used to generate forecasts when 𝛼 equals 0,
1, and 2. Nevertheless, the authors cannot present the precise solutions
to the differential equations when 𝛼 equals other values, such as larger
integer and non-integer. Because it is hard to solve the differential
equation in Eq. (3). Based on the previous findings, one can conclude
that the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model has limitations in producing
accurate projections when the parameter 𝛼 is a non-integer. This situ-
ation may restrict the application fields of the 𝐺𝑀(1, 1, 𝑡𝛼) model. To
address such drawbacks mentioned above, several contributions can be
made as follows:

(1) The advantages and disadvantages of the conventional
𝐺𝑀(1, 1, 𝑡𝛼) model are discussed, which provided solid foundation for
understanding its modeling mechanism and facilitating building an
optimized one. Moreover, graphic and visual effects of the several
representative values of the parameter 𝛼 are presented to illustrate the
model’s vast application fields.

(2) A simplified solution to the differential equation is derived by
using the definite integral technique to overcome the inherent short-
comings in the 𝐺𝑀(1, 1, 𝑡𝛼) model, which composes the core component
of the optimized 𝐺𝑀(1, 1, 𝑡𝛼) model, short for 𝑂𝐺𝑀(1, 1, 𝑡𝛼). Such im-
provements enable the new model to effectively address time series
forecasting issues with various characteristics, such as nonlinearity and
volatility, by adaptatively adjusting the parameter 𝛼 without integer
restrictions.

(3) For elaborating on the process of calibrating parameters, the
parameter packages are initially introduced in this paper. This work
is beneficial for novice readers to grasp the mechanism of parameter
estimations in the new model. Furthermore, based on these parameter
packages, the optimal values of the parameter 𝛼 can be determined
by utilizing a certain intelligent algorithm, such as the Particle Swarm
Optimization algorithm (PSO) (Kennedy, 2010; Ding et al., 2021b).

(4) An experimental study on forecasting the settlement of soft-clay
subgrade for an expressway is conducted for verifying the efficacy and

adaptability of the proposed model. A range of competing models is
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selected to compare with the proposed model, such as 𝐺𝑀(1, 1, 𝑡1),
𝐺𝑀(1, 1, 𝑡2), the grey power model (𝐺𝑃𝑀(1, 1)) (Wang et al., 2009), the
nonlinear discrete grey model (𝑁𝐷𝐺𝑀(1, 1)) (Zhang and Liu, 2010),
Autoregressive Integrated Moving Average model (𝐴𝑅𝐼𝑀𝐴), and Back
Propagation Neural Network (𝐵𝑃𝑁𝑁). Moreover, a method of proba-
bility density prediction provides an alternative perspective for further
illustrating the reliability and stability of this proposed model, besides
the widely used indicators: Absolute Percentage Error (𝐴𝑃𝐸), Mean
Absolute Percentage Error (𝑀𝐴𝑃𝐸), and Root Mean Squared Error
𝑅𝑀𝑆𝐸).

The structure of this paper is designed below: Section 2 is dedicated
o the introduction of the modeling mechanism of the conventional
𝑀(1, 1, 𝑡𝛼) model. Moreover, the classical model’s advantages and
isadvantages is discussed here. Based on the findings in Section 2, the
ewly proposed 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model is designed, and the details of the
arameter estimation and differential equation solution are provided
n Section 3. Besides, two experiments and their analysis are given
n Section 4. Finally, the conclusions of this paper are presented in
ection 5.

. The conventional GM(1,1,t𝜶) model

The conventional 𝐺𝑀(1, 1, 𝑡𝛼) model is originally proposed by Qian
et al. (2012), whose purpose is to forecast a system sequence charac-
terized by a dynamic changing growth rate, normally S-sharped curve.
This curve is usually divided into three phases: uniform phase with low
speed, acceleration phase with mid-high speed, and stable phase with
low speed. For this situation, the traditional 𝐺𝑀(1, 1) model that is
good at modeling homogenous sequences cannot perform well. Thus,
the 𝐺𝑀(1, 1, 𝑡𝛼) model is necessary for further expanding the applica-
tion areas of the grey prediction theory. Subsequently, the details of
this model will be provided as follows.

Definition 1 (Qian et al., 2012). Set 𝐗(𝟎) = (𝑥(0)(1), 𝑥(0)(2),… , 𝑥(0)(𝑛)),
𝑛 ≥ 4 is a non-negative sequence, where n is the size of a sequence and
𝑥(0)(𝑘) represents the kth actual observation. The first order accumulat-
ing generation sequence of 𝐗(𝟎) is 𝐗(1) = (𝑥(1)(1), 𝑥(1)(2),… , 𝑥(1)(𝑛)), 𝑛 ≥
4, where 𝑥(1)(𝑘) =

∑𝑘
𝑖=1 𝑥

(0)(𝑖), 𝑘 = 1, 2,… , 𝑛. By using the first
order Accumulation Generation Operator (1-AGO) (Deng, 1982; Liu and
Forrest, 2010), the randomness and noise in the original domain can be
significantly reduced and the inner patterns will be enhanced, which
can increase the forecasting precision.

Subsequently, 𝐙(𝟏) = (𝑧(1)(1), 𝑧(1)(2),… , 𝑧(1)(𝑛)) is the sequence of the
mean generation of 𝑋(1), where 𝑧(1) (1) = 𝑥(1) (1), 𝑧(1)(𝑘) = 1

2 (𝑥
(1)(𝑘) +

(1)(𝑘 − 1)), 𝑘 = 2, 3,… , 𝑛. 𝐙(𝟏) is called the background values, which
orks as a bridge connecting the difference and differential equations

noted in Eqs. (1) and (2), respectively)

efinition 2 (Qian et al., 2012). 𝑋(0), 𝑋(1), and 𝑍(1) are given in
efinition 1, the equation
(0)(𝑘) + 𝑎𝑧(1)(𝑘) = 𝑏𝑘𝛼 + 𝑐 (1)

s called the basic form of the 𝐺𝑀(1, 1, 𝑡𝛼) model, where 𝑎 refers to the
evelopment coefficient, 𝑏 represents a nonlinear coefficient, and 𝑐 is
he grey action quantity term, respectively. Then, the equation

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1)(𝑘) = 𝑏𝑡𝛼 + 𝑐 (2)

s named as the whitening equation of the 𝐺𝑀(1, 1, 𝑡𝛼) model.

The difference equation in Eq. (1) is functionally used to estimate
he parameters 𝑎 and 𝑏 with the known 𝛼. Subsequently, by substituting

the estimated parameters 𝑎 and 𝑏 into Eq. (2) and solving the whitening
differential equation, one can obtain the time response function for
producing predictions. Detailed process to parameter estimation will
be illustrated in Theorem 1.
 m

3

Theorem 1 (Qian et al., 2012). 𝐗(𝟎), 𝐗(𝟏), and 𝐙(𝟏) are defined in
Definition 1, one can obtain the estimated values of 𝑎, 𝑏, and 𝑐, namely
�̂� = [𝑎, 𝑏, 𝑐]𝑇 = (𝐁𝑇𝐁)−1𝐁𝑇𝐘, where

𝐁 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝑧(1)(2) 2𝛼 1
−𝑧(1)(3) 3𝛼 1

⋮ ⋮ ⋮
−𝑧(1)(𝑛) 𝑛𝛼 1

⎤

⎥

⎥

⎥

⎥

⎦

,𝐘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥(0) (2)
𝑥(0) (3)

⋮
𝑥(0) (𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

.

Proof. Substituting the values of 𝑘 over different time into Eq. (1), one
will have

𝑥(0) (2) + 𝑎𝑧(1)(2) = 2𝛼𝑏 + 𝑐
𝑥(0) (3) + 𝑎𝑧(1)(3) = 3𝛼𝑏 + 𝑐

⋮
𝑥(0) (𝑛) + 𝑎𝑧(1)(𝑛) = 𝑛𝛼𝑏 + 𝑐

hen, solving the matrix 𝐘 = 𝐁�̂� by utilizing the ordinary least square
ethod, the estimated values of the parameter can be obtained �̂� =

𝑎, 𝑏, 𝑐]𝑇 = (𝐁𝑇𝐁)−1𝐁𝑇𝐘.

heorem 2 (Qian et al., 2012). After estimating the values of the parame-
ers 𝑎, 𝑏, and 𝑐, the time response function for solving the whitening equation
n Eq. (2) is presented as

(1) (𝑡) = 𝑏𝑒−𝑎𝑡 ∫ 𝑡𝛼𝑒𝑎𝑡𝑑𝑡 + 𝐶 (3)

here a and b can be estimated by the ordinary least squares method. The
is a constant that depends on the initial value 𝑥(1) (1).

roof. Using the solution of the first-order linear nonhomogeneous
rdinary differential equation, Eq. (3) can be obtained.

As introduced by Qian et al. (2012), the 𝐺𝑀(1, 1, 𝑡𝛼) model has
ertain advantages, such as unifying a family of univariate grey models
ccompanying with different values of 𝛼 and modeling various time
equences with different characteristics. To be specific, when the pa-
ameter 𝛼 = 0, 𝐺𝑀(1, 1, 𝑡𝛼) yields to the 𝐺𝑀(1, 1) model (Zeng et al.,
020), which is normally used to model the homogenous series. When
he parameter 𝛼 = 1, 𝐺𝑀(1, 1, 𝑡𝛼) is equivalent to the 𝐺𝑀(1, 1, 𝑘)
odel (Guo et al., 2014; He et al., 2019; Kennedy, 2010), which is
sually utilized to model the non-homogenous sequences. When the
arameter 𝛼 is assigned with other integer values, the 𝐺𝑀(1, 1, 𝑡𝛼)
odel can model certain sequences having various characteristics. In

eneral, the 𝐺𝑀(1, 1, 𝑡𝛼) model is capable of representing the most
opular homogeneous and non-homogeneous grey models, and it can
lso induce diverse other new models. As can be seen in Fig. 1, when
he parameter 𝛼 is assigned with different values, the 𝐺𝑀(1, 1, 𝑡𝛼) model
an adjust to many modeling sequences having a diverse growing rate.
t means that various time series can be described by adopting different
values, showing strong adaptability and broad practicality.

Although the 𝐺𝑀(1, 1, 𝑡𝛼) model has strong adaptability with var-
ous values of 𝛼, it still gets some disadvantages. Specifically, the
arameter 𝛼 normally equals an integer (usually 𝛼 = 0, 1 𝑜𝑟 2) in
revious studies because it is easy to solve the differential function
n Eq. (2). This limitation may restrict the expanded applications of
rey models. Moreover, accurate solutions to the differential equation
n Eq. (2) are not provided when the parameter 𝛼 equals other values
xcept for zero, one, and two. This situation may bring challenges
or the 𝐺𝑀(1, 1, 𝑡𝛼) model to model system sequences with different
eatures in the real world, thereby restricting its popularization and
pplication. Thus, to overcome these limitations, proposing a novel
ethod to solve to differential functions accurately is imperative to

nhance the generality and practicality of the conventional 𝐺𝑀(1, 1, 𝑡𝛼)

odel.
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Fig. 1. Visual expressions of the 𝐺𝑀(1, 1, 𝑡𝛼 ) model when 𝛼 equals 0, 1, and 2.

. The proposed OGM(1,1,t𝜶) model

To address the above disadvantages of the conventional 𝐺𝑀(1, 1, 𝑡𝛼)
model, a new optimized grey model, namely 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model, is
esigned. The following subsections are dedicated to elaborating on the
echanism of the newly proposed model.

.1. The simplified time response function for the proposed model

As introduced in Definitions 1 and 2, and Theorem 1, the ba-
ic concepts of the proposed model are similar to the conventional
𝑀(1, 1, 𝑡𝛼) model. Subsequently, one will concentrate on the solution

o the differential equations in Eq. (2).

heorem 3. After estimating the values of the parameters 𝑎, 𝑏, and 𝑐
ccording to Theorem 1, the simplified time response function for solving
he whitening equation in Eq. (2) is obtained as:

(1) (𝑡) = 𝑒−𝑎𝑡 ∫

𝑡

1
𝑏𝑡𝛼𝑒𝑎𝜏𝑑𝜏 + 𝑐

𝑎
− 𝑐

𝑎
𝑒−𝑎(𝑡−1) + 𝑥(1) (1) 𝑒−𝑎(𝑡−1) (4)

Then, the corresponding discrete version of the time response func-
ion is

(1) (𝑘) = 𝑒−𝑎𝑡 ∫

𝑘

1
𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 + 𝑐

𝑎
− 𝑐
𝑎
𝑒−𝑎(𝑘−1) +𝑥(1) (1) 𝑒−𝑎(𝑘−1), 𝑘 = 1, 2,…

(5)

Moreover, the forecasted values in the original domain can be
obtained by using the one-order Inverse Accumulating Generating Op-
eration (abbreviated as 1− 𝐼𝐴𝐺𝑂) (Deng, 1982; Liu and Forrest, 2010)
as follows.

̂ (0) (𝑘 + 1) = �̂�(1) (𝑘 + 1) − �̂�(1) (𝑘) , 𝑘 = 1, 2,… (6)

Proof. By solving the differential equation in Eq. (2), one can obtain

𝑥(1) (𝑡) = 𝑒− ∫ 𝑎𝑑𝑡
[

𝐶 + ∫ (𝑏𝑡𝛼 + 𝑐) 𝑒∫ 𝑎𝑑𝑡𝑑𝑡
]

(7)

where a, b, and c can be estimated by using the ordinary least squares
method, and the C is a constant.

Assuming 𝑒∫ 𝑎𝑑𝑡 = 𝑒𝑎𝑡+𝑤, where 𝑤 is a constant, then Eq. (7) can be
equivalent to:

𝑥(1) (𝑡) 𝑒𝑎𝑡+𝑤 − 𝐶 = (𝑏𝑡𝛼 + 𝑐) 𝑒𝑎𝑡+𝑤𝑑𝑡 (8)
∫

4

Letting 𝐹 (𝑡) = 𝑥(1) (𝑡) 𝑒𝑎𝑡+𝑤 − 𝐶 and 𝐺 (𝑡) = ∫ (𝑏𝑡𝛼 + 𝑐) 𝑒𝑎𝑡+𝑤𝑑𝑡, then
𝐹 (𝑡) = 𝐺 (𝑡) for any t. according to the classical grey system theory,
appropriate selections of the initial condition is essential to access to
particular solution formula of Eq. (2). Theoretically, this initial condi-
tion value could be randomly assigned to any specific value. However,
for convenience and simplification purposes, the first data point in the
collected observations is usually considered as the first choice, i.e.,
𝑥(1) (𝑡)||

|𝑡=1
= 𝑥(0) (1). Subsequently, Setting 𝑡 = 1 and 𝑡 = 𝑡0(𝑡0 > 1),

hen one can obtain:
(

𝑡0
)

− 𝐹 (1) = 𝐺
(

𝑡0
)

− 𝐺 (1) (9)

As a consequence, the lower bound of the definite integral is de-
ermined by choosing the initial condition values. Then, substituting
(1) = 𝑥(1)(1)𝑒𝛼𝑡0+𝑤 − 𝐶 into Eq. (9), this equation can be equally

transferred into:

𝑥(1)
(

𝑡0
)

𝑒𝑎𝑡0+𝑤 − 𝑥(1) (1) 𝑒𝑎+𝑤 = ∫

𝑡0

1
(𝑏𝑡𝛼 + 𝑐) 𝑒𝑎𝑡+𝑤𝑑𝑡 (10)

Integrating and simplifying Eq. (10), one will have

𝑥(1)
(

𝑡0
)

𝑒𝑎𝑡0 − 𝑥(1) (1) 𝑒𝑎 = ∫

𝑡0

1
(𝑏𝑡𝛼 + 𝑐) 𝑒𝑎𝑡𝑑𝑡 (11)

Integrating and solving Eq. (11), one can get the simplified time
esponse function for the 𝐺𝑀(1, 1, 𝑡𝛼) whitening model (abbreviated as
𝐺𝑀(1, 1, 𝑡𝛼)):

𝑥(1)
(

𝑡0
)

= 𝑒−𝑎𝑡0 ∫

𝑡0

1
𝑏𝑡𝛼𝑒𝑎𝑡𝑑𝑡 + 𝑐

𝑎
− 𝑐

𝑎
𝑒−𝑎(𝑡0−1) + 𝑥(1) (1) 𝑒−𝑎(𝑡0−1) (12)

Replacing the 𝑡0 with the variable 𝑡, the generalized version of
q. (12) is:

(1) (𝑡) = 𝑒−𝑎𝑡 ∫

𝑡

1
𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 + 𝑐

𝑎
− 𝑐

𝑎
𝑒−𝑎(𝑡−1) + 𝑥(1) (1) 𝑒−𝑎(𝑡−1) (13)

Discretizing Eq. (13), then one can obtain the corresponding discrete
version of the time response function, seen in Eq. (5). Subsequently, by
using the 1 − 𝐼𝐴𝐺𝑂 technique, the forecasting function in the original
domain can be given, seen in Eq. (6). Thus, Theorem 3 has been
proved. Subsequently, by utilizing Eqs. (5) and (6), one will be able
to generate forecasts in any practical studies under the premise of a
known parameter 𝛼.

Observing Eqs. (4) and (5), one can find that the simplified time
response function for the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model is not only related to the
initial value but also associated with the a, c, and time k. It is worth
mentioning that when the parameter 𝛼 is an integer, the primitive
function of ∫ 𝑡

1 𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 exists and projections can be generated by
using Eq. (5). However, when the parameter 𝛼 is a non-integer, the
primitive function of ∫ 𝑡

1 𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 does not exist, which means that one
annot evaluate this definite integral. To this end, one can estimate
his definite integral based on the dispersion sum technique, namely
𝑡
1 𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 ≈

∑𝜏=𝑡
1 𝑏𝜏𝛼𝑒𝑎𝜏𝛥𝜏, where 𝛥𝜏 = 0.0001. In general, the

roposed 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model can produce any forecasts no matter
hat kinds of the parameter 𝛼 is, which expands the application fields
f the conventional grey model in reference Qian et al. (2012).

.2. The solutions to the parameter 𝛼 in the proposed model

As revealed in Section 3.1, parameters (𝑎, 𝑏, 𝑐) are essential for the
ime response function. Thus, 𝑎, 𝑏, 𝑐 are called principle parameters, and
𝑎, 𝑏, 𝑐) is noted as the I-order parameter packet of the 𝑂𝐺𝑀(1, 1, 𝑡𝛼)
odel, abbreviated 𝐏𝐈 = (𝑎, 𝑏, 𝑐)𝑇 . By using the ordinary least square
ethod, explained in Section 2, one can obtain 𝐏𝐈 = (𝑎, 𝑏, 𝑐)𝑇 =
𝐁𝐓𝐁

)−𝟏 𝐁𝐓𝐘, where

=

⎛

⎜

⎜

⎜

⎜

−𝑧(1)(2) 2𝛼 1
−𝑧(1)(3) 3𝛼 1

⋮ ⋮ ⋮
(1) 𝛼

⎞

⎟

⎟

⎟

⎟

𝐘 =

⎛

⎜

⎜

⎜

⎜

𝑥(0)(2)
𝑥(0)(3)

⋮
(0)

⎞

⎟

⎟

⎟

⎟

(14)
⎝

−𝑧 (𝑛) 𝑛 1
⎠ ⎝

𝑥 (𝑛)
⎠
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𝐏

𝐁

c

𝐏

g
p

For estimating 𝐏𝐈 = (𝑎, 𝑏, 𝑐)𝑇 , some component parameters are intro-
uced, which are noted as the II-order parameter packet,abbreviated as
𝐈𝐈 = (𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ,𝐺,𝐻)𝑇 , where 𝐴 =

∑𝑛
𝑘=2 𝑧

(1)(𝑘), 𝐵 =
∑𝑛

𝑘=2 𝑘
𝛼 ,

𝐶 =
∑𝑛

𝑘=2(𝑧
(1)(𝑘))2, 𝐷 =

∑𝑛
𝑘=2 𝑘

2𝛼 , 𝐸 =
∑𝑛

𝑘=2 𝑧
(1)(𝑘) × 𝑘𝛼 , 𝐹 =

∑𝑛
𝑘=2 −𝑧

(1)(𝑘) × 𝑋(0)(𝑘), 𝐺 =
∑𝑛

𝑘=2 𝑘
𝛼 × 𝑋(0)(𝑘), and 𝐻 =

∑𝑛
𝑘=2 𝑋

(0)(𝑘).
Besides, the actual values of the basic variables compose the III-order
parameter packet, abbreviated as 𝐏𝐈𝐈𝐈 =

(

𝑥(0) (𝑘) , 𝑧(1)(𝑘)
)𝑇 .

Based on the three orders parameter packet, one can obtain

(

𝐁𝐓𝐁
)−𝟏 =

⎛

⎜

⎜

⎝

(𝑛 − 1)𝐷 − 𝐵2 (𝑛 − 1)𝐸 − 𝐴𝐵 𝐴𝐷 − 𝐵𝐸
(𝑛 − 1)𝐸 − 𝐴𝐵 (𝑛 − 1)𝐶 − 𝐴2 𝐴𝐸 − 𝐵𝐶
𝐴𝐷 − 𝐵𝐸 𝐴𝐸 − 𝐵𝐶 𝐶𝐷 − 𝐸2

⎞

⎟

⎟

⎠

(𝑛 − 1)𝐶𝐷 + 2𝐴𝐵𝐸 − 𝐴2𝐷 − (𝑛 − 1)𝐸2 − 𝐵2𝐶
, (15)

𝐓𝐘 =
(

𝐹 𝐺 𝐻
)𝑇 . (16)

Subsequently, the parameter packages of the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model
an be expressed as

𝐈 = (𝑎, 𝑏, 𝑐)𝑇 =

⎛

⎜

⎜

⎝

((𝑛 − 1)𝐷 − 𝐵2)𝐹 + ((𝑛 − 1)𝐶 − 𝐴2)𝐺 + (𝐴𝐷 − 𝐵𝐸)𝐻
((𝑛 − 1)𝐸 − 𝐴𝐵)𝐹 + ((𝑛 − 1)𝐸 − 𝐴𝐵)𝐺 + (𝐴𝐸 − 𝐵𝐶)𝐻

(𝐴𝐷 − 𝐵𝐸)𝐹 + (𝐴𝐸 − 𝐵𝐶)𝐺 + (𝐶𝐷 − 𝐸2)𝐻

⎞

⎟

⎟

⎠

(𝑛 − 1)𝐶𝐷 + 2𝐴𝐵𝐸 − 𝐴2𝐷 − (𝑛 − 1)𝐸2 − 𝐵2𝐶

(17)

By using the parameter packages, the detailed estimations of the
principle parameters 𝑎, 𝑏, 𝑐 can be easily understood by a reader who
has little expert knowledge. In addition to the principle parameters, the
parameter 𝛼 also plays an essential role in obtaining an accurate time
response function (explained in Section 3.1). Due to the complexity of
estimating parameter 𝛼, its optimal value is calculated by minimizing
the mean relative squared error (MRSE) between the forecasted and
actual data points. For this, the objective function can be expressed as:

𝑀𝑖𝑛 𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑘=1

|

|

|

|

|

1 −
�̂�(0) (𝑘)
𝑥(0) (𝑘)

|

|

|

|

|

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑎, 𝑏, 𝑐)𝑇 =
(

𝐁𝐓𝐁
)−𝟏 𝐁𝐓𝐘

𝑥(1) (𝑘) = 𝑒−𝑎𝑡 ∫

𝑘

1
𝑏𝜏𝛼𝑒𝑎𝜏𝑑𝜏 + 𝑐

𝑎
− 𝑐

𝑎
𝑒−𝑎(𝑘−1) + 𝑥(1) (1) 𝑒−𝑎(𝑘−1)

�̂�(0) (𝑘 + 1) = �̂�(1) (𝑘 + 1) − �̂�(1) (𝑘)

𝑘 = 1, 2,… , 𝑛

(18)

where �̂�(0) (𝑘) represents the forecasted values, 𝑥(0) (𝑘) stands for the
actual observations, and 𝑛 is the total number of the input data points.

To obtain the optimum parameter 𝛼 in the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model, the
objective function in Eq. (18) should approach its minimum value to an
extreme. Owing to its nonlinear features, the objective function can be
solved by using an intelligent algorithm, such as PSO for solving some
complicated optimization problems. The main procedures of PSO are
outlined as follows

Step 1: Define the time-power parameter 𝛼 and establish a fitness
function for each particle. According to the objective function men-
tioned above, the expression of the fitness function can be defined as

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠[𝑃 (𝑖, 𝑗)]𝑇 = 1
𝑛

𝑛
∑

𝑘=1

|

|

|

|

|

1 −
�̂�(0) (𝑘)
𝑥(0) (𝑘)

|

|

|

|

|

(19)

Step 2: Set parameters. Before implementing the PSO, several pa-
rameters need to be defined. 𝑃 (𝑖, 𝑗) represents the current position of
the 𝑗th particle in the 𝑖th iteration. 𝑃𝑏𝑒𝑠𝑡(𝑖) records the position when
getting minimal fitness in the 𝑖th iteration. Moreover, 𝐺𝑏𝑒𝑠𝑡 records the
lobal elite position around the whole search space and updates new
ositions when 𝐺𝑏𝑒𝑠𝑡 > 𝑃𝑏𝑒𝑠𝑡(𝑖).
Step 3: Initialize the position and speed randomly for each parti-

cle and renew positions according to the rules. The particle velocity
formula in the first iteration is given as follows:

𝑣 = 𝑑 (𝑝𝑏𝑒𝑠𝑡 − 𝑦 )𝑄 + 𝑑 (𝑔𝑏𝑒𝑠𝑡 − 𝑦 )𝑄 (20)
𝑘+1 1 𝑘 𝑘 1 2 𝑘 𝑘 2

5

where 𝑄1 and 𝑄2 are random variables belonging to [0, 1]. Additionally,
𝑑1 and 𝑑2 are the acceleration factors. Then, the rules for updating
particles’ position satisfy 𝑃 (𝑖, 𝑗 + 1) = 𝑃 (𝑖, 𝑗) + 𝑣𝑘. And the particle
velocities for the next iteration can be reckoned as

𝑣𝑘+1 = ℎ𝑣𝑘 + 𝑑1(𝑝𝑏𝑒𝑠𝑡𝑘 − 𝑦𝑘)𝑄1 + 𝑑2(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑦𝑘)𝑄2 (21)

where ℎ represents an inertia weight for adjusting convergence rate.
Step 4: Obtain the optimal solutions when two termination criteria

are reached: (1) approaching the minimal fitness value mathematically.
(2) reaching the maximum number of iterations.

In general, the programming problem in the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model
can be solved by using the PSO technique to obtain the optimal pa-
rameter 𝛼 based on the characteristics of the system sequence. Subse-
quently, once one obtains all the parameters 𝑎, 𝑏, 𝑐 in Section 2 and the
time-power parameter 𝛼 in Section 3.2, the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model will
generate projections.

Besides, for demonstrating the reliability of the proposed model,
probability density prediction based on Monte Carlo Simulation is
carried out in this paper. As illustrated in the above procedures for
the PSO, one need to initialize the position and speed for each particle
by randomly generating a certain value for the time parameter 𝛼,
which means that the optimal value of 𝛼 for the end-up phrase may
be different when setting diverse initialized values at the beginning
phrase. In other words, the optimal value of 𝛼 is possibly different for
each iterative operation of the PSO. As a consequence, the estimated
values of parameters 𝑎, 𝑏, 𝑐 and their corresponding predicted values of
roadbed settlements diverse significantly. Thus, the reliability and accu-
racy of the proposed model should be ensured for future estimations of
subgrade settlements. To this end, the Monte Carlo Simulation Test is
necessary for ensuring its forecasting repeatability. In this simulation
study, tests on predicting the settlement of soft-clay subgrade on the
expressway will be taken for 1000 times. Correspondingly, one will
obtain 1000 parameter estimates and predicted sequences, respectively.
In conclusion, the proposed model optimizes the prediction model,
which will lay the foundation for the follow-up prediction work.

3.3. Probability density prediction based on the proposed model

As described in the previous subsection, due to the diverse parame-
ter values of 𝛼 for each iterative operation of the PSO, the following
estimated values of 𝑎, 𝑏, and 𝑐 (explained in Theorem 1) and the
forecasted values generated by the corresponding simplified time re-
sponse function in Eq. (10) vary for each time. Therefore, the reliability
and accuracy of the proposed model should be ensured for future
estimations. To deal with such a situation, the method of probability
density prediction is introduced in this paper, which can provide more
information about the parameters and forecasting data of the proposed
model. In this method, the kernel density estimation (KDE) technique
is employed to calculate the probability density.

As researchers revealed, KDE is a nonparametric method for esti-
mating the probability density functions (Sheather and Jones, 1991)
and can fit observations to simulate a true probability distribution by a
smooth spike function (He et al., 2019). One takes the different values
of the time-power parameter 𝛼 as an example for explanations. For
the Monte Carlo Simulation, 1000 values of the time-power parameter
𝛼 can be obtained by using the PSO, which can be represented as
𝑃 = (𝑝1, 𝑝2,… , 𝑝1000). The estimated value 𝑝𝑖(𝑖 = 1, 2,… , 1000) is used
as the input values of the kernel function. Additionally, based on the
selected bandwidth for the probability density analysis, the probability
density functions of the time-power parameter 𝛼 are obtained eventu-
ally. Assuming that 𝑝1, 𝑝2,… , 𝑝1000 are the independent random samples
with the identical distribution, the probability density function at any
one point is denoted as 𝑓 , whose formula is expressed below.

𝑓ℎ(𝜏) =
1

𝑛
∑

𝐾ℎ(𝜏 − 𝑝𝑖) =
1

𝑛
∑

𝐾ℎ(
𝜏 − 𝑝𝑖 ) (22)
𝑛 𝑖=1 𝑛ℎ 𝑖=1 ℎ
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Table 1
The criterion for MAPE values.
MAPE (%) Predictive performance MAPE (%) Predictive performance

<10 High precision 10–20 Good precision
20–50 Reasonable precision >50 Weak precision

In this equation, ℎ represents the bandwidth that is a smoothing param-
eter requiring a self-actuated setting, 𝑛 stands for the sample size (here
𝑛 = 1000), and 𝐾(⋅) is a non-negative kernel function. In this paper, the
Gaussian kernel function is chosen as the representative of the kernel
function, whose expression is displayed as follows.

𝐾(𝑢) = 1
√

2𝜋
𝑒−0.5𝑢

2 (23)

In addition to the time-power parameter 𝛼, the probability density
f the parameters 𝑎, 𝑏, 𝑐 and their corresponding predicted values of
oadbed settlements can also be measured by using a similar way. The
low chart of the algorithm in this paper is presented in Fig. 2.

.4. Measurement of accuracy

In this paper, to verify the reliability and applicability of the newly-
esigned technique, three critical evaluation indicators are put forward:

The Absolute Percentage Error (𝐴𝑃𝐸) and Mean Absolute Percent-
ge Error (𝑀𝐴𝑃𝐸) are utilized for analysis to point forecasted results.
he criterion of accuracy grades for 𝑀𝐴𝑃𝐸 values is exhibited in
able 1. They are defined as follows.

APE (𝑘) = |

|

|

(

�̂�(0) (𝑘) − 𝑥(0) (𝑘)
)

∕𝑥(0) (𝑘)||
|

× 100% (24)

𝑀𝐴𝑃𝐸 = 1
𝑛 − 1

𝑛
∑

𝑘=2
𝐴𝑃𝐸(𝑘) (25)

The Root Mean Squared Error (𝑅𝑀𝑆𝐸) is used to reflect the devi-
tion degree of the forecasted values compared with the original ones.
his statistical indicator is calculated by using the following Eq. (22).

𝑀𝑆𝐸 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑘=2

(

�̂�(0) (𝑘) − 𝑥(0) (𝑘)
)2 (26)

In these above three indicators, 𝑛 is the total number of data points
for the settlements of soft clay to be predicted, 𝑥(0) (𝑘) and �̂�(0) (𝑘) stand
for the original and forecasted values at the time 𝑘, respectively.

Additionally, the Percentage Error Analysis (PEA) is introduced to
compare the forecasting performance between two competitors, whose
formula is presented in Eq. (27)

𝑃𝐸𝐴 =
|

|

|

|

𝑀𝐴𝑃𝐸1 −𝑀𝐴𝑃𝐸2
𝑀𝐴𝑃𝐸2

|

|

|

|

× 100% (27)

here 𝑀𝐴𝑃𝐸1 and 𝑀𝐴𝑃𝐸2 represent the MAPE values produced by
odels 1 and 2, respectively. By using this formula, one can measure

he forecasting performance of the model 1 compared with the model
, thereby effectively identifying the best forecasting technique among
ll the competitors.

. Empirical analysis

In this section, two experiments are conducted to verify the efficacy
nd reliability of the newly proposed models. To be specific, the first
ne is designed to show that the simplified time response function
n the proposed model is consistent with that of the conventional
odel, verifying its universality and applicability. The other one is to
emonstrate the expanded application fields of the new model, which
s predicting the settlements of soft-clay subgrade on the expressway.
6

4.1. Verification of the simplified time response function for the proposed
model

As introduced by Qian et al. (2012), he provided the accurate time
response function of the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model when 𝛼 = 1
and 𝛼 = 2, which can be outlined as follows:

When 𝛼 = 1, the time response function of the 𝐺𝑀(1, 1, 𝑡1) model is:

𝑥(1) (𝑡) =
(

𝑥(1) (1) − 𝑏
𝑎
− 𝑎𝑐 − 𝑏

𝑎2

)

𝑒−𝑎(𝑡−1) + 𝑏
𝑎
𝑡 + 𝑎𝑐 − 𝑏

𝑎2
(28)

When 𝛼 = 2, the time response function of the 𝐺𝑀(1, 1, 𝑡2) model is:

𝑥(1) (𝑡) =
(

𝑥(1) (1) − 𝑎2𝑏 + 𝑎2𝑐 − 2𝑎𝑏 + 2𝑏
𝑎2

)

𝑒−𝑎(𝑡−1) + 𝑏
𝑎
𝑡2 − 𝑏

𝑎2
𝑡+ 𝑎2𝑐 + 2𝑏

𝑎2

(29)

For the purpose of verifying the efficacy and adaptability of the
roposed model, one would randomly generate a sequence, based
n which two versions of the 𝐺𝑀(1, 1, 𝑡𝛼) models are established for

generating forecasts with the time parameter 𝛼 = 1 and 𝛼 = 2,
espectively. Subsequently, two groups of forecasted sequences will be
btained: one is provided by the original time response function from
he conventional 𝐺𝑀(1, 1, 𝑡𝛼) model, and the other one is generated
y the simplified time response function from the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model.
omparing these two groups of generated sequences, one can conclude:

f little deviations exist between these two series, the 𝑂𝐺𝑀(1, 1, 𝑡𝛼)
aving a simplified time response function is effective and practicable
or replacing the traditional one. Otherwise, the proposed model fails
o unify the conventional grey model.

One randomly generates a non-homogenous sequence by using the
quation: 𝑋(𝑘) = 𝑒0.1𝑘 + 2, 𝑘 = 1, 2,… , 6. Based on these data points,
he 𝑂𝐺𝑀(1, 1, 𝑡𝛼) and conventional 𝐺𝑀(1, 1, 𝑡𝛼) models are established
o check whether they are equivalent for generating forecasts, whose
umerical results are listed in Table 2.

From Table 2, it is seen that two groups of the forecasted sequences
re provided. To be specific, one is generated by the 𝐺𝑀(1, 1, 𝑡1) and
𝐺𝑀(1, 1, 𝑡1) models, and the other one is predicted by the 𝐺𝑀(1, 1, 𝑡2)
nd 𝑂𝐺𝑀(1, 1, 𝑡2) models. Intuitively observed from Table 2, one find
hat the values from the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model are almost identical with
hose from the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model no matter 𝛼 = 1 or

= 2. These findings illustrate that the simplified time response
unction from the proposed model (one of the greatest contributions in
his paper) can effectively produce the same projections as the original
ne from the classic model. Additionally, it is worth mentioning that
he proposed model can model diverse sequences if the time-power
arameter 𝛼 equals to different values. Therefore, the simplified time
esponse function for the new model is correct and effective, which
as much broader application areas compared with the conventional
𝑀(1, 1, 𝑡𝛼) model.

.2. Settlement prediction of soft-clay subgrade for an expressway

To demonstrate the reliability and efficacy of the proposed model,
nother case study on predicting settlement of the soft-clay foundation
n the highway is conducted by comparing it with several forecasting
echniques. Most importantly, besides the three measurement indi-
ators, explained in Section 3.3, an alternative analysis method of
he probability density prediction is initially introduced in this case,
hich provides a reliable foundation for supporting the superior per-

ormance of the proposed model. Then, the actual case about predicting
ettlement of soft-clay subgrade on the highway comes below.
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Fig. 2. The flow chart of the proposed model and its probability density prediction.

Fig. 3. The probability density curves concerning the generated results of 𝑂𝐺𝑀(1, 1, 𝑡𝛼 ).
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Table 2
Numerical results provided by the OGM (1,1,t 𝛼) and conventional GM (1,1,t 𝛼) models.

X Original sequence Parameters

3.1052 3.2214 3.3499 3.4918 3.6487 3.8221 a b c

GM(1,1,t1) 3.1052 3.3254 3.4647 3.6186 3.7887 3.9766 −0.0999 −0.1998 3.1499
OGM(1,1,t1) 3.1052 3.3251 3.4646 3.6185 3.7886 3.9765 −0.0999 −0.1998 3.1499
Error 0 0.0003 0.0001 0.0001 0.0001 0.0001 0 0 0

GM(1,1,t2) 3.1052 3.2126 3.3349 3.4715 3.6229 3.7895 −0.0311 0.0052 3.0545
OGM(1,1,t2) 3.1052 3.2126 3.3349 3.4715 3.6229 3.7896 −0.0311 0.0052 3.0545
Error 0 0 0 0 0 −0.0001 0 0 0
Table 3
The designations and time response functions for the five nonlinear grey models.

Models Model designations The time response functions

M1: 𝐺𝑀(1, 1, 𝑡) 𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏𝑡 + 𝑐 �̂�(1)(𝑘) = 48.36 ⋅ 𝑒0.19(𝑘−1) − 5.34𝑘 − 39.72

M2: 𝐺𝑀(1, 1, 𝑡2) 𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏𝑡2 + 𝑐 �̂�(1)(𝑘) = −33.46 ⋅ 𝑒0.19(𝑘−1) + 5.34𝑘2 − 13.29𝑘 + 47.61

M3: 𝐺𝑃𝑀(1, 1) 𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏(𝑥(1))𝛼 �̂�(1)(𝑘) = [14.70 ⋅ 𝑒0.17(𝑘−1) − 12.24]1.33

M4: 𝑁𝐷𝐺𝑀(1, 1) �̂�(1)(𝑘 + 1) = 𝛽1�̂�(1)(𝑘) + 𝛽2𝑘 + 𝛽3 �̂�(1)(𝑘 + 1) = 1.21 ⋅ �̂�(1)(𝑘) + 1.20𝑘 + 3.64

M5 and M6: 𝑂𝐺𝑀(1, 1, 𝑡𝛼 ) 𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏𝑡𝛼 + 𝑐 �̂�(1)(𝑘) = 13.50 ⋅ 𝑒0.34(𝑘−1) − 10.2 + 𝑒0.34𝑘

𝜏=𝑘
∑

1
−0.0002 ⋅ 𝜏5.20𝑒−0.34𝜏𝛥𝜏, 𝛥𝜏 = 0.0001

Note: the median and mean values for the parameter 𝛼 in 𝐺𝑀(1, 1, 𝑡𝛼 ) obtained by Monte Carlo Simulation are the same, thus the generated time response functions for M5 and
M6 are the same.
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4.2.1. Data collection
In recent years, the settlement forecasting of soft-clay highway

roadbed is one of the prominent problems in engineering. As the
soft clay has the features of high compressibility, high water content,
low strength, and poor permeability, it will result in unpredictably
abnormal and large settlements, which weaken the highways’ structural
and serviceability performance (Müthing et al., 2018). Therefore, an ac-
curate prediction technique is essential as well as a countermeasure for
settlements to ensure each expressway fulfills its sufficient functions.

Besides, as the settlement of soft clay usually changes with time
and is influenced by many uncertain factors, such as traffic loading,
the trends of the collected data normally appear to be nonlinear with a
dynamic growth rate. Thus, accurate prediction methods are necessary
to deal with such situations, which can resist the effects of the above
factors. Recently, more and more emerging techniques have been em-
ployed to forecast the settlements, such as the grey prediction model
(Qian et al., 2012) and the Finite Element Model (Müthing et al., 2018).
To accurately predict the settlement, the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model is utilized
in comparison with several competing models.

In this study, the original observations are collected from Qian et al.
(2012), which have eight data points in Table 3. For the purpose of
testing the fitted and predicted ability of the competing models, six
observations are used as input data for model calibration as well as
checking their fitted capability. Then, the remaining two data points
are employed for testing their forecasting performance.

4.2.2. Model calibration for the proposed model
In this section, in order to verify the accuracy and reliability of the

𝑂𝐺𝑀(1, 1, 𝑡𝛼) model, probability density prediction based on the Monte
Carlo Simulation study is carried out in this paper, whose procedures
are presented in Fig. 4. Following these steps, the probability density
curves of the optimized parameter 𝛼, the corresponding MAPE values,
s well as the forecasted results of the seventh and eighth data in Monte
arlo Simulation are depicted in Fig. 3.

In Fig. 3(a), the value of the abscissa represents the optimized values
f the time-power parameter 𝛼 solved by PSO in the 𝑂𝐺𝑀(1, 1, 𝑡𝛼)

model, and the ordinate stands for the probability density that can

reflect the distribution of possible values of the parameter 𝛼. Similarly, m

8

the probability density curve of the generated corresponding MAPE
values is depicted in Fig. 3(b). From these two figures, the following
conclusions can be drawn. The two probability density curves all
appear to have a single peak during the whole iteration process. For the
time-power parameter 𝛼, its estimated values appear at the intervals of
[5, 6], and its mean and median values are around 5.20 with extremely
igh probability. This phenomenon indicates that the proposed model
ncorporated with PSO has strong stability and high reliability because
he estimated values of the time-power parameter are almost in the
icinity of the highest probability point in the probability density curve.
s shown in Fig. 3(b), based on the solutions of the parameter 𝛼, the
enerated MAPE values demonstrate analogous distribution features
ith slight fluctuations, and most values are distributed around 2.287
t the single peak. Therefore, it is easy to find that the 𝑂𝐺𝑀(1, 1, 𝑡𝛼)
odel has consecutive and slippy probability density curves of the mod-

ling parameters and corresponding errors, indicating that its generated
orecasts have a significant likelihood of getting closer to the actual
bservations.

Subsequent to the estimations of all these above parameters, the
robability density curves of predicted values by using the
𝐺𝑀(1, 1, 𝑡𝛼) model in Monte Carlo Simulation are presented in
ig. 3(c) and (d). Similar to the findings of the parameters, the proba-
ility density of the seventh and eighth forecasted values also show
curvilinear change with one peak. To be specific, the forecasted

alues of the seventh datapoint are almost in the vicinity of the highest
robability point in the probability density curve, approximating 24.18,
hich is highly close to the actual value of 23.80. For the eighth data
oint, its predicted values of 28.83 are getting closer to the actual
bservation of 28.60 with the highest probability. For the purpose of
urther revealing its effectiveness, the mean and median values of the
rojections in the fitted and predicted domain are provided in Table 3.
n general, the probability density curve can provide more detailed
nformation for settlement predictions of soft-clay subgrade and present
ew ideas and methods for demonstrating the reliability and stability
f the proposed model.

.2.3. Comparative analysis
In order to further illustrate the efficacy of the newly designed
odel, a range of grey and non-grey models are included in this paper.
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Fig. 4. APEs for the eight competing models in both fitted and predicted stages.

As the representations of the probability density prediction for the
𝑂𝐺𝑀(1, 1, 𝑡𝛼) model, the mean and median values of the predicted
values for 1000 times are chosen for explanation purposes, which are
remarked as 𝑀5 and 𝑀6, respectively. For the other competing models,
the 𝐺𝑀(1, 1, 𝑡1), 𝐺𝑀(1, 1, 𝑡2), 𝐺𝑃𝑀(1, 1), 𝑁𝐷𝐺𝑀(1, 1), 𝐵𝑃𝑁𝑁 , and
𝑅𝐼𝑀𝐴(1, 1, 0) models are noted as 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀7, and 𝑀8, re-

spectively. The model designations and solved time response functions
for these competing nonlinear grey models are presented in Table 3.
Besides, the estimated values and corresponding errors in the fitted and
predicted stages are provided in Table 4. For visual presentation, Fig. 4
is depicted to show the APE values at the observed time points for the
ight competing models.

According to the experimental results in Table 4 and Fig. 4, the
ean and median values of the forecasts generated by using the
𝐺𝑀(1, 1, 𝑡𝛼) model are much closer to the valid values in both fit-

ted and predicted domains, compared with those values obtained by
the 𝐺𝑀(1, 1, 𝑡1), 𝐺𝑀(1, 1, 𝑡2), 𝐺𝑃𝑀(1, 1), and 𝑁𝐷𝐺𝑀(1, 1) models.
pecifically, compared with these four grey models, the proposed
odel can increase the forecasting precision with the percentage of
8.84%, 83.95%, 10.10%, and 11.92% in the fitting stage, respectively,
ccording to the PEA results. Besides, in the predicted period, the novel
odel can produce forecasts with the improved accuracy percentages

f 82.75%, 91.76%, 60.73%, and 69.49%, respectively. Thereby, the
𝐺𝑀(1, 1, 𝑡𝛼) model turns to be more effective and practical than the

grey benchmarks.
Additionally, it can be observed from Fig. 4 that 𝑂𝐺𝑀(1, 1, 𝑡𝛼)

exhibits the stable and extraordinary simulation capability with the
APE values at all the time points distributed at a low level. Moreover,
in the predicted period, the proposed 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model exhibits
the superlative forecasting precision with the smallest MAPE value
of 1.19% and RMSE of 0.31 by contrast with the other benchmarks.
Besides, it can be indicated from Table 3 that the proposed model is
provided with a concise structure and has more robust adaptability
for dealing with non-linear issues by virtue of the adaptive time-power
parameter 𝛼.

From the above analysis and the generated results presented in
Tables 3 and 4, the superiority of 𝐺𝑀(1, 1, 𝑡𝛼) can be interpreted from
the following two aspects. On the one hand, the traditional 𝐺𝑀(1, 1, 𝑡𝛼)
model has comparatively narrow application fields owing to its re-
stricted time-power parameter 𝛼(usually 𝛼 = 0, 1𝑜𝑟2). To enhance the

model adaptability, the generalized solution to the proposed model

9

with arbitrary values including both integers and non-integers assigned
to the time-power coefficient 𝛼 is provided in Theorem 3. Therefore,
the intelligent coefficient 𝛼 enables 𝐺𝑀(1, 1, 𝑡𝛼) to extract the nonlinear
features in diverse time series, thereby broadening the application
fields of the convention model. On the other hand, the proposed model
is refined with a simple structure that may accelerate the forecasting
speed and seem to be more explainable in contrast with 𝐺𝑃𝑀(1, 1)
nd 𝑁𝐷𝐺𝑀(1, 1) that have relatively more complicated structures.

Furthermore, by incorporating PSO to solve the time-power coefficient,
the forecasted results of the proposed model can achieve high precision
with strong robustness.

Furthermore, compared to the non-grey models, namely 𝐵𝑃𝑁𝑁 and
𝐴𝑅𝐼𝑀𝐴(1, 1, 0), the proposed model still achieves better performance
in the predicted phase, although these two non-grey models have
slightly lower MAPE and RMSE values in the fitted area. To be specific,
he 𝐵𝑃𝑁𝑁 and 𝐴𝑅𝐼𝑀𝐴(1, 1, 0) models lost several predicted values
n their first three and two data points, which cause the lower MAPE

and RMSE values. However, they both produce larger MAPE and RMSE
values in the predicted domain, which means their projections deviate
far from the true values. Moreover, from the PEA perspective, the
forecasting accuracy of this new model can be increased by 93.86% and
89.63%, respectively, in the predicted period when comparing with the
𝐵𝑃𝑁𝑁 , and 𝐴𝑅𝐼𝑀𝐴(1, 1, 0) models. For these two non-grey models,
they are highly dependent on the amount of training data. Otherwise,
they may produce unacceptable errors in real applications. Therefore,
compared with the 𝐵𝑃𝑁𝑁 and 𝐴𝑅𝐼𝑀𝐴(1, 1, 0), the proposed model
shows much more stability and reliability while dealing with insuffi-
cient data. It can be chosen as an alternative forecasting technique for
predicting settlements of soft-clay subgrade on an expressway.

In general, the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model achieves better performance
than the other grey and non-grey competitors in terms of the measuring
indicators MAPE and RMSE. Moreover, this proposed model also obtain
strong stability and high reliability in both fitted and predicted do-
mains (explained by using probability density analysis in Section 4.2.2),
which justifies the superiority of the newly designed model.

5. Conclusions

Aiming at solving the nonlinear forecasting issues in real applica-
tions, this paper proposed an optimized time-power based grey predic-
tion model -𝑂𝐺𝑀(1, 1, 𝑡𝛼). Initially, the advantages and disadvantages
of the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model are analyzed comprehensively.
Secondly, to eliminate the above drawbacks, a simplified time response
function is put forward, enabling the new model to adapt to various
issues with diverse values of the time-power parameter. Thirdly, for
accurately determining the optimal time-power parameter, the PSO is
employed, and the parameter packages are provided for illustrating the
detailed process of parameter estimations. Lastly, two experiments are
conducted to demonstrate the efficacy and reliability of the proposed
model. Our main findings are:

(1) The simplified solution to the differential equation is effective
and practical to overcome the limitations of the previous model. This
improvement enables the proposed model to solve various nonlinear
issues with strong adaptability because the time-power parameter can
take any values based on the characteristics of the modeling sequences.
Moreover, this new model can significantly improve the forecasting
accuracy with the support of PSO.

(2) With respect to the promising method of probability density
analysis, the true values of the parameters and predicted values are
almost all in the vicinity of the highest probability point, which shows
strong stability and high reliability of the proposed model. Thus, the
probability density curve can not only provide more detailed informa-
tion for settlement predictions of soft-clay subgrade but also present
new ideas and methods for demonstrating the performance of the

proposed model.
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Table 4
Fitted and forecasted values of four competing models for settlements prediction of soft-clay subgrade on an expressway [Unit: cm].
𝑥(0)(𝑘) 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

�̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE �̂�(0)(𝑘) APE

The Fitted stage

3.3 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.00 3.30 0.00 – – 3.30 –
5.6 4.94 11.87 4.40 21.19 5.43 3.11 5.52 1.38 5.49 1.92 5.49 1.92 – – 5.60 –
7.9 7.12 9.89 6.11 22.67 7.74 2.02 7.96 0.72 7.70 2.59 7.70 2.59 – – 7.79 1.43
10.3 9.77 5.18 8.82 15.05 10.47 1.68 10.73 4.20 10.67 3.58 10.67 3.58 10.55 2.43 10.09 2.07
14.5 12.98 10.51 12.20 16.33 13.81 4.76 13.63 6.00 14.50 0.00 14.50 0.00 14.97 3.24 12.58 13.23
18.1 16.87 6.80 16.05 11.07 17.93 0.92 18.70 3.31 19.12 5.64 19.12 5.64 18.25 0.83 17.71 2.18

MAPE (%) 7.35 14.27 2.08 2.60 2.29 2.29 2.17 4.72

RMSE 0.93 1.65 0.31 0.47 0.45 0.45 0.32 0.99

The predicted stage

23.8 21.59 9.29 20.23 15.00 23.06 3.11 23.04 3.18 24.18 1.58 24.18 1.58 19.12 19.66 21.52 9.58
28.6 27.31 4.51 24.63 13.88 29.44 2.95 29.92 4.63 28.83 0.81 28.83 0.81 23.14 19.09 24.78 13.36

MAPE (%) 6.90 14.44 3.03 3.90 1.19 1.19 19.38 11.47

RMSE 1.81 3.78 0.74 1.08 0.31 0.31 5.09 3.15
C

C

C

D
D

D

D

D

D

D

E

G

G

H

K

L

L

L

L

L

L

M

M

M

(3) In addition to the probability density curve for measuring the
tability and reliability of the proposed model, four measuring statis-
ical indicators, namely APE, MAPE, RMSE, and PER, are chosen for
omparative analysis. Results show that the 𝑂𝐺𝑀(1, 1, 𝑡𝛼) model can
rovide more accurate projections and reduce the uncertainty of settle-
ent prediction of soft-clay subgrade on an expressway. Consequently,

he proposed model can be selected as the optimal technique for future
stimations of the settlements.

In general, the idea to design the novel model has provided a new
ngle to optimize the conventional 𝐺𝑀(1, 1, 𝑡𝛼) model. Much work will
e carried out in the future. On the one hand, more improvements on
his new model can be conducted to enhance further its forecasting
apabilities, such as optimizing the background value, the initial con-
ition, and the model structure. On the other hand, more non-linear
orecasting issues in other domains, such as industrial and economic
ields, can be solved by using this proposed model. Thus, the proposed
odel has potentially enriched the grey system theory.
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