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• I present a frequency-domain method for solving linear rational expectations models.
• I derive an analytical solution to new Keynesian models under the fiscal theory.
• The solution makes clear the cross-equation restrictions and policy transmission mechanisms.
• The method yields useful by-products which are not easily obtainable using time-domain methods.
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a b s t r a c t

This article illustrates a widely applicable frequency-domain methodology to solving multivariate linear
rational expectations models. As an example, we solve a prototypical new Keynesian model under the
assumption that primary surpluses evolve independently of government liabilities, a regime in which
the fiscal theory of the price level is valid. The resulting analytical solution is useful in characterizing the
cross-equation restrictions and illustrating the complex interaction between the fiscal theory and price
rigidity. We also highlight some useful by-products of such method which are not easily obtainable for
more sophisticated models using time-domain methods.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

This article builds on the seminal work, most notably of Hansen
and Sargent (1980) and Whiteman (1983), that developed ana-
lytical approaches of integrating dynamic economic theories with
econometric methods for the purpose of formulating and inter-
preting economic time series.We show that the frequency-domain
methodology of Tan and Walker (2015) to solving linear rational
expectationsmodels, who generalized its predecessors to themul-
tivariate setting, is widely applicable for solving well-known dy-
namic macroeconomic models. In particular, we walk the reader
through the details in applying such method and highlight some
useful by-products which are not easily obtainable for sophisti-
cated models using time-domain methods.
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As an example, we solve a prototypical new Keynesian model
of the kind presented in Woodford (2003) and Galí (2008). This
has the advantage of keeping the illustration simple and concrete,
but it should be emphasized that the techniques we describe are
of wide applicability in more general settings, e.g. models with a
maturity structure, which we leave for future research. We derive
an analytical solution to a linearized version of the model under
the assumption that primary surpluses evolve independently of
government liabilities, a regime in which the fiscal theory of the
price level is valid (Leeper, 1991;Woodford, 1995; Cochrane, 1998;
Davig and Leeper, 2006; Sims, 2013). This solution is useful in
characterizing the cross-equation restrictions and illustrating the
complex interaction between the fiscal theory and price rigidity.
It also presents a new way of testing the validity of this theory.
An equivalent derivation using time-domain methods, as well as
an extensive study of the fiscal theory, can be found in Leeper and
Leith (2016).
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2. A prototypical new Keynesian model

Themodel’s essential elements include: a representative house-
hold and a continuum of firms, each producing a differentiated
good; only a fraction of firms can reset their prices each period;
a cashless economy with one-period nominal bonds Bt that sell
at price 1/Rt , where Rt is the monetary policy instrument; lump-
sum taxation and zero government spending so that consumption
equals output, ct = yt ; a monetary authority and a fiscal authority.

2.1. Linearized system

Let x̂ ≡ ln(xt) − ln(x∗) denote the log-deviation of a variable xt
from its steady state x∗. It is straightforward to show that a linear
approximation to the model’s equilibrium conditions leads to the
following equations. First, the household’s optimizing behavior,
when imposed by the goods market clearing condition, implies

ŷt = Et ŷt+1 − σ(R̂t − Et π̂t+1) (2.1)

where σ > 0 is the elasticity of intertemporal substitution,
πt = Pt/Pt−1 is the inflation between periods t − 1 and t , and Et
represents mathematical expectation given information available
at time t . The firm’s optimal price-setting behavior reduces to

π̂t = βEt π̂t+1 + κ ŷt (2.2)

where 0 < β < 1 is the discount factor and κ > 0 is the slope of
the so-called new Keynesian Phillips curve.

Next, the monetary authority follows an interest rate feedback
rule that reacts to deviations of inflation from its steady state

R̂t = απ̂t + θt (2.3)

where θt is an exogenous policy shock.1 In addition, the fiscal
authority sets an exogenous primary surplus process, st , that
evolves independently of government liabilities. This profligate
fiscal policy requires that the monetary policy adjust nominal
interest rate only weakly to inflation deviations, i.e. 0 6 α < 1
(Leeper, 1991). We assume that (θt , ŝt) is jointly a white noise,
normally distributed with mean zero and covariance matrix Σ .

Lastly, any policy choice must satisfy the flow government
budget constraint, 1

Rt
Bt
Pt

+ st =
Bt−1
Pt

, which is linearized as

b̂t = R̂t + β−1(b̂t−1 − π̂t) − (β−1
− 1)ŝt (2.4)

where bt = Bt/Pt is the real debt at the end of period t . Note
that the real value of outstanding debt at the beginning of period t ,
b̂t−1−π̂t , is determined in equilibrium at time t . (2.1)–(2.4) consti-
tute a system of expectational difference equations in the variables
{ŷt , π̂t , R̂t , b̂t}, which fully characterizes the model dynamics un-
der the fiscal theory.

2.2. Analytical solution

To simplify the exhibition, we substitute the monetary policy
rule (2.3) into (2.1) and (2.4) and rewrite the resulting system in

1 For analytical clarity, we assume that the monetary authority does not respond
to output deviations.
the following form
1 σ 0
0 β 0
0 0 0


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L−1
+
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Ψ0

L0


θt

ŝt


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+
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t+1

ηπ
t+1

ηb
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(2.5)

where L is the lag operator: Lkx̂t = x̂t−k, {Γ−1, Γ0, Γ1, Ψ0} are
matrix coefficients, and ηt+1 is a vector of endogenous forecasting
errors defined as ηt+1 = x̂t+1 − Et x̂t+1 so that Etηt+1 = 0.

Suppose a solution x̂t = [ŷt , π̂t , b̂t ]′ to (2.5) is of the form

x̂t =

∞
k=0

Ckεt−k ≡ C(L)εt (2.6)

where εt = [θt , ŝt ]′, x̂t is taken to be covariance stationary, and
C(L) is a polynomial in the lag operator. Note that such moving
average representation of the solution is very useful because it
also leads to the impulse response function—the coefficient Ck(i, j)
measures exactly the response of x̂t+k(i) to a shock εt(j). In what
follows, we walk the reader through the key steps in deriving the
content of C(·).

Step 1: transform the time-domain system (2.5) into its
equivalent frequency-domain representation. To this end, we
evaluate the forecasting errors ηt+1 = [η

y
t+1, η

π
t+1, η

b
t+1]

′ using
(2.6) and the Wiener–Kolmogorov optimal prediction formula

ηt+1 =


C(L)L−1

−


C(L)
L


+


εt = C0L−1εt (2.7)

where [·]+ is the annihilation operator that ignores negative
powers of L. An implicit assumption underlying (2.7) is that the
history of monetary and fiscal shocks are perfectly observed up to
period t . Define Γ (L) = Γ−1L−1

+ Γ0 + Γ1L and substitute (2.6)
and (2.7) into (2.5)

Γ (L)C(L)εt = (Ψ0 + Γ−1C0L−1)εt

whichmust hold for all realizations of εt . Therefore, the coefficient
matrices are related by the z-transform identities

zΓ (z)C(z) = zΨ0 + Γ−1C0

where z is a complex variable. In solving for C(z), ideally one
would multiply both sides by (zΓ (z))−1, but C(z) needs to have
only non-negative powers of z by (2.6) and be analytic inside
the unit circle so that its coefficients are square-summable by
covariance stationarity. This requirement can be examined by a
careful decomposition of zΓ (z) in the next step.

Step 2: apply the Smith canonical decomposition to the polyno-
mial matrix zΓ (z)2

zΓ (z)

= U(z)−1

1 0 0
0 1 0
0 0 z(z − β)(z − λ−)


  

S(z)

1 0 0
0 1 0
0 0 z − λ+

 V (z)−1

  
T (z)

which factorizes all roots inside the unit circle from those out-
side and collects them in the diagonal polynomial matrix S(z).

2 The Smith decomposition is available inMAPLE orMATLAB’s Symbolic Toolbox.
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Here U(z) and V (z) are unimodular matrices and λ± = (γ1 ±
γ 2
1 − 4γ0)/(2γ0), where γ0 = (1 + ασκ)/β and γ1 = (1 + β +

σκ)/β . It is straightforward to show that ∂λ+

∂α
< 0 and ∂λ−

∂α
> 0.

Moreover, given the parameter restrictions underlying the fiscal
theory, both roots are real, one inside the unit circle, |λ−| < 1, and
one outside, |λ+| > 1

0 < λ− <
β

1 + ασκ
< β < 1, λ+ >

1 + σκ

1 + ασκ
> 1. (2.8)

The zero root arises whenever the model is forward-looking,
i.e. Γ−1 ≠ 0. The root z = β emerges as the reciprocal of
the root from the government budget constraint (2.4) viewed as
a difference equation in b̂. To see where the pair of roots z =

λ± comes from, combine (2.1)–(2.3) and substitute out ŷ and R̂
to obtain a second order expectational difference equation for
inflation

Et π̂t+2 −
1 + β + σκ

β
Et π̂t+1 +

1 + ασκ

β
π̂t = −

σκ

β
θt .

The roots governing the dynamics of this equation, which are
derived in Leeper and Leith (2016), are exactly 1/λ±. More
generally, Tan and Walker (2015) show that roots inside (outside)
the unit circle in the frequency-domain correspond to the
reciprocals of unstable (stable) roots in the time-domain.

Step 3: examine the existence of solution. A covariance
stationary solution exists if the elements of C0 can be chosen to
cancel those problematic roots in S(z). To check that, multiply both
sides of the z-transform identities by S(z)−1

T (z)C(z) =

 U1·(z)
U2·(z)
1

z(z − β)(z − λ−)
U3·(z)

 (zΨ0 + Γ−1C0)

where Uj·(z) is the jth row of U(z). These identities are valid for all
z on the open unit disk except for z = 0, β, λ−. But since C(z)must
be well-defined for all |z| < 1, this condition places the following
restrictions on the unknown matrix coefficient C0

U3·(z)(zΨ0 + Γ−1C0)|z=0,β,λ−
= 0. (2.9)

Stacking the restrictions in (2.9) yields3

−


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1 + ασκ
0
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−
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1 + ασκ

0
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R

C0

=

 0
β2σκ(1 − β)(αβ − 1)

1 + ασκ
σκλ3

−
(αβ − 1)

1 + ασκ
0
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  

A

.

Apparently, the solution exists if and only if the column space of
R spans the column space of A, i.e. span(A) ⊆ span(R), which is
satisfied here. Solving for C0 gives
C0(1, 1) C0(1, 2)
C0(2, 1) C0(2, 2)



=


σλ2

−
(β − 1 + σκ)

λ− − β
−

(1 − β)σ [(σκ + β)λ− − β]

λ− − β

−
σκλ2

−

λ− − β

σκλ−(1 − β)

λ− − β


where C0(3, 1) and C0(3, 2) are left undetermined.

3 Here we omit the restriction imposed by z = 0 because it is unrestrictive.
Step 4: examine the uniqueness of solution. In order for the
solution to be unique, we must be able to determine {Ck}

∞

k=0 from
the parameter restrictions supplied by −RC0 = A. It requires
that from knowledge of RC0 one be able to pin down U3·(z)Γ−1C0
evaluated at the reciprocals of roots outside the unit circle. This is
tantamount to verifying whether the columns of R′ span the space
spanned by the rows of

Q = U3·(λ
−1
+

)Γ−1

=


κ(αβ − 1)

λ2
+(1 + ασκ)

(αβ − 1)[σκ + β(1 − λ+)]

λ2
+(1 + ασκ)

0


i.e. span(Q ′) ⊆ span(R′), which is also satisfied here. Uniqueness
would fail if the government budget constraint (2.4) were dropped
from the system, leading to the more familiar indeterminacy
result in the new Keynesian literature. But this implicitly assumes
a different fiscal behavior—the primary surplus always adjusts
systematically to assure fiscal solvency. Technically, one would
have insufficient restrictions in (2.9) for the determination of C0
by losing a root inside the unit circle (i.e. z = β).

Practically, the two space spanning conditions for existence
and uniqueness and the computation of C0 can be obtained by
employing the singular value decompositions of A, R, and Q . Now
the unique solution can be computed as ŷt

π̂t

b̂t
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ŝt
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L
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×


θt
ŝt


(2.10)

where

C0(3, 1) =
β + σκ

(1 + ασκ)λ+

, C0(3, 2) =
β − 1
λ+

.

Evidently, [ŷt , π̂t , b̂t ]′ follows a vector autoregressive moving
average (ARMA) process of order (1, 1), where b̂t only consists of
an AR component. All variables share the common AR root, λ+,
which corresponds to the root outside the unit circle from the
Smith decomposition. This ensures that theAR component remains
stable. The MA components in ŷt and π̂t , on the other hand, stem
from the surviving terms in the restriction system (2.9) after the
removal of all roots inside the unit circle.

We highlight several useful by-products of the solution which
are not easily obtainable formore sophisticatedmodels using time-
domain methods. First, (2.10) clearly captures all cross-equation
restrictions imposed by the hypothesis of rational expectations,
which are the ‘‘hallmark of rational expectations models’’ Hansen
and Sargent (1980). Second, it provides the basis for constructing
the spectral density of x̂t and the associated frequency-domain
likelihood function (Harvey, 1990). For diagnostic purposes, we
can estimate and test the model based on various frequencies by
setting certain frequencies to zero (Christiano andVigfusson, 2003;
Qu and Tkachenko, 2012). This presents a new way of testing the
validity of the fiscal theory. Third, from (2.10) we can easily write
output, inflation, and real debt as linear functions of all past and
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present policy shocks with unambiguously signed coefficients.4In
particular, output follows

ŷt = C0(1, 1)  
<0

θt

+

∞
k=1

C0(1, 1)


1
λ+

−
β − λ−

βλ−(β − 1 + σκ)


1
λ+

k−1

  
>0

θt−k

+ C0(1, 2)  
<0

ŝt +

∞
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

1
λ+

k

  
<0

ŝt−k (2.11)

inflation follows

π̂t = C0(2, 1)  
>0

θt +
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1
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ŝt +

∞
k=1

C0(2, 2)


1
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and real debt follows

b̂t = C0(3, 1)  
>0

θt +

∞
k=1

C0(3, 1)


1
λ+

k

  
>0

θt−k + C0(3, 2)  
<0

ŝt

+

∞
k=1

C0(3, 2)


1
λ+

k

  
<0

ŝt−k (2.13)

where we have separated shocks in the current period from those
in the past.

2.3. Economic interpretations

The closed-form solution (2.10), or (2.11)–(2.13), is useful in un-
derstanding how monetary and fiscal disturbances are transmit-
ted to influence the endogenous variables under the fiscal theory.5
Its economic interpretations hinge on a ubiquitous relation in any
dynamic macro model, that government liabilities derive its real
value from the present value of current and expected future pri-
mary surpluses

b̂t−1 − π̂t = −β

∞
k=0

βkEt r̂t+k + (1 − β)

∞
k=0

βkEt ŝt+k,

∀t (2.14)

where b̂t−1 is predetermined in period t and r̂t+k = R̂t+k −

Et+kπ̂t+k+1 denotes the ex-ante real interest rate. The above equi-
librium condition canbeobtainedby substituting the consumption-
Euler equation (2.1) into the government budget constraint
(2.4) and iterating forward. Given an exogenous path for pri-
mary surpluses, (2.14) already hints at a violation of ‘‘Ricardian

4 C0(1, 1) < 0 holds by (2.8) and the fact that β − 1+ σκ > 0 for most plausible
values of {β, σ , κ}. 1

λ+
−

β−λ−

βλ−(β−1+σκ)
< 0 holds by (2.8) and the property that

λ+λ− =
β

1+ασκ
. C0(1, 2) < 0 holds by (2.8) and the fact that ∂λ−

∂α
> 0. A similar

argument can be used to sign the coefficients in π̂ and b̂.
5 We follow Woodford (1998) and Leeper and Leith (2016), but see also Kim

(2003) for an empirical analysis.
equivalence’’—an increase in government debt, due to either mon-
etary or fiscal shock, will generate a positive wealth effect which
in turn transmits into higher inflation and, in the presence of nom-
inal rigidities, higher real activity. A higher inflation is also needed
to revalue the nominal government debt so as to ensure its sus-
tainability. In what follows, we highlight three examples of this
non-Ricardian property and the role of inflation in stabilizing gov-
ernment debt.

First, we consider the effects of amonetary contraction. Because
prices are sticky, a higher nominal interest rate raises the real
interest rate. Given exogenous primary surpluses, this leads to
more rapidly growing real debt services and hence raises the real
debt in (2.13). The higher real interest rate also increases private
saving by inducing households to convert consumption goods into
bonds in the current period. Thus, output falls initially in (2.11).
However, because the higher real debt is backed up less than
sufficiently by the present value of primary surpluses in the next
period, households will become wealthier and convert bonds back
into consumption goods. From (2.11) and (2.12), this increase in
aggregate demand pushes up both output and inflation in the next
period so that (2.14) is restored. Inflation must also rise in the
current as well as future periods to guarantee debt sustainability.
Therefore, Ricardian equivalence breaks down.

Second, we examine the impacts of a fiscal expansion. (2.14)
suggests that a deficit-financed tax cut shows up as a mix of
higher current inflation and a lower path for real interest rates,
which in turn leads to higher output. Again, Ricardian equivalence
breaks down. This is because given exogenous primary surpluses,
households have no anticipation of higher future taxation so
that the lower present value of primary surpluses makes them
wealthier and substitute bonds into consumption goods. Through
revaluation, the higher inflation also ensures that government debt
remains sustainable.

Lastly, it is straightforward to show that both the extent,
|C0(2, 1)| and |C0(2, 2)|, and the decay factor, 1/λ+, of the
policy effects on inflation are increasing in α—a more aggressive
monetary stance not only amplifies the inflationary impacts from
higher debt but makes these impacts more persistent as well,
leading to an enhancement of the fiscal theory mechanism.

3. Concluding remarks

This article illustrates a widely applicable frequency-domain
solution method in the context of a prototypical new Keynesian
model under the fiscal theory. The closed-form solution derived
herein is useful in characterizing the cross-equation restrictions
and understanding the policy transmission mechanisms. We
conclude by pointing out that our approach also provides a natural
framework for estimating and testing dynamic macroeconomic
models along various frequencies, and defer these applications to
a sequel to this paper.
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