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Abstract
Stackelberg model is a dynamic model, in which two players with different scales and
power players act sequentially. However, there are few literatures that apply complex
oligopoly dynamics theory in this model. In this paper, based on a traditional Stackel-
berg model, we improve the model in Peng and Lu (Appl Math Comput 271:259–268,
2015) and construct a multi-period Stackelberg triopoly game model. One leader firm
and two followers with bounded rationality behavior are considered. The leader’s
decision-making variable, which is simplified as a constant in Peng and Lu’s paper,
is observed by the followers in stage 1 in every period in this model. We arrive at the
conclusion that the leader would have the first-move advantage even when the players
adopt a gradient output adjustment process in amulti-period Stackelberg triopoly game
model. The speeds of output adjustment form a three-dimensional stability region. In
the equilibrium state, the outputs of the followers are one-third of the leader’s. With
adjustment speed of the leader increasing, Stackelberg equilibriumwould be broken at
a certain point. The effect of adjustment speed on speed of convergence to equilibrium
is also analyzed. Theoretical result and numerical simulation both demonstrate that the
speed converging to equilibrium is slowing when the Lyapunov exponent increases.
Strange attractor and the sensitivity on initial values are presented by numerical sim-
ulation, while feedback control method is used to eliminate chaos. Moreover, in the
stage of periodic bifurcation outside the stability region, the increase of the adjustment
speed of the leader could be incentive for choosing chaos. While in the chaos stage,
the average profits of three firms are uncertain, which shows that the relative benefit
is closely related to adjustment speed of bounded rationality.
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1 Introduction

An oligopoly market is a mixed market between perfect monopoly and monopolistic
competition market. In such a typical market, only a few firms take the strategies of
counterparts into account while focusing on consumer demands. Cournot proposed
the first oligopoly model in 1838 (Cournot 1838), with two firms selling homogeneous
products and competing with output. Bertrand model is a significant model of price
competition (Bertrand 1883). As we all know, Nash equilibrium solution is a core
content in classic game theory. A large amount of references have revolved around this
solution concept. These equilibrium models provided some deterministic conclusions
which were needed by economists. Given initial conditions, however, the status of
system might still be unpredictable even after Lorenz discovered chaos behavior in
deterministic system in 1963.

Chaos theory applied to dynamic oligopoly game model mainly combines tradi-
tional game theory with nonlinear dynamic system theory. This methodology relaxes
the hypothesis of participants’ complete rationality and complete information of mar-
ket, and constructs a dynamic oligarchy gamemodel given the condition of incomplete
rationality. When the participants follow certain “behavior rules”, it is not easy to
maintain Nash equilibrium.

Puu’s (1998) study revealed that equilibrium output is not consistent and periodic
behavior exists. To make it more realistic, scholars put forward kinds of rationality
expectations, which formed the cornerstone of this field. Modified Cournot models
were further more proposed (Agiza 1998; Agiza et al. 1999; He and Li 2012). Even
given 3 or 4 competitors, bifurcation and chaos attractors exist. Nonlinear demand
function or cost function increased the complexion of dynamic game (Brianzoni et al.
2015; Askar et al. 2015). Cavalli and Naimzada (2015) verified that price elasticity of
demand would cause a gradient adjustment in chaos. Besides expectations of bounded
rationality and adaptive expectation, Tuinstra (2004) introduced local monopolistic
approach (LMA). Based on LMA, oligopolists conjectured that the market demand
function is linear and estimated equilibrium by solving a profit maximization problem
(Bischi et al. 2007; Peng et al. 2016). With this approach, Nash equilibrium became
unstable, and furthermore, flip bifurcation and Neimark–Sacker bifurcation occurred
(Cavalli andNaimzada 2014;Bischi et al. 2015;Baiardi et al. 2015).Moreover, delayed
dynamics based on bounded rationality assumptions attracts more attention. As delay
parameter increases, the stability region would be enlarged (Ma and Wu 2013; Ding
et al. 2014; Gori et al. 2015).

While the previous researches are based on homogeneous products, differentiated
products become a hot topic for some scholars. The effect of product differentiation
degree on chaos was verified (Agliari et al. 2016; Elsadany 2017). Yu and Yu’s (2014)
conclusion indicated that the greater the degree of product horizontal differentiation
is, the more stable the Nash equilibrium of the system is. The studies of Fanti and
Gori (2012), Askar and Alshamrani’s (2014), revealed that a higher degree of product
differentiation may destabilize the Nash equilibrium. Research of Shi et al. (2015)
constructed a model with differentiated products which were produced by an original
manufacture, and analyzed the effects of consumer’s willingness-to-pay (WTP) on the
stability of Nash equilibrium.
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To some extent, chaos is a state that far away from equilibrium, and it means output
or price is unpredictable. The situation in themarket is difficult to control and oligarchs
can notmake accurate decisions. Thusmeasures should be taken to delay and eliminate
chaos. Zhang and Ma (2012), Elsadany et al. (2013), as well as Yi and Zeng (2015)
used delay feedback control in a dynamic game of four oligarchs. Du et al. (2013),
Ma et al. (2014) stabilized chaos ultimately by adding appropriate limiter.

Generally speaking, most previous researches could be classified as follows:
homogeneous products and differentiated products, in the perspective of product
characteristics; price competition and output competition, in the oligarchs’ decision-
making variable perspective. However, no matter the model is Cournot, Bertrand or
Hotelling model, or no matter the product is homogeneous, horizontally or vertically
differentiated, the underlyingmodel is still a static model with participants’ simultane-
ous action. However, in realistic market, enterprises have different scales and power.
Firms’ actions are not well synchronized either. There’re leader firms and followers.
Stackelberg model is such a dynamic model that describes two players with sequen-
tial actions (von Stackelberg 1938). There are few literatures which apply complex
oligopoly dynamics theory in Stackelberg model. Li and Ma (2016) studied the sup-
ply chains with probability selling using dynamics methodology. Peng and Lu (2015)
investigated the effect of cost coefficient on equilibrium output according to dynamic
system in a Stackelberg model. In their paper, the dynamic progress did not reflect
this dynamic adjustment. In every period, the follower simplified the decision-making
variable of the leader in stage 1 as a constant. However, in fact, in Stackelberg model,
the follower could observe the leader’s action in stage 2.

In our paper, we revise this adjustment progress and analyze a multi-period Stack-
elberg model with three oligarchs, one leader firm and two followers. In stage 1, the
leader acts first; in stage 2, the two followers simultaneously adapt their outputs to the
leader’s output. The equilibrium outputs are solved by backward induction. A three-
dimensional stability region is drawn. We observe periodic phenomena and chaotic
behaviors with parameters exceeding the boundary of stability region. In our model,
the decision-making variable of the leader in stage 1 is observed by two followers in
every period.

This paper is organized as follows. In Sect. 2, a multi-period Stackelberg triopoly
game and the locally asymptotic stability of equilibrium are investigated. In Sect. 3,
some abundant simulation results on three-dimensional stability region, strange attrac-
tor and sensitivity on initial value are presented by value assignment. In Sect. 4, some
conclusions are summarized through theoretical analysis and numerical simulation
results.

2 TheModel

2.1 Traditional Stackelberg Triopoly Game

Consider a traditional Stackelberg triopoly game with output competition. Demand
function of the market is Q=a−p, where p is price of the market, a is price ceiling.
Q=q1 +q2 +q3 is supply of the market. For simplicity, we assume that every firm
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has the same linear cost function ci(qi)�cqi(i=1, 2, 3). Since a is price ceiling of
the market, we have the reasonable assumption a − c � θ > 0. The model has two
stages. In the first stage, the leader firm 1 chooses the quantity q1 and maximizes profit
function π1 � (p − c)q1. In the second stage, the followers firms 2 and 3 observe
q1, and choose the quantity q2 and q3 to maximize the profit function respectively,
namely to find a solution to the following maximum problem

max
qi≥0

πi � (p − c)qi � (θ − q−i − qi )qi , i � 2, 3

where q− i represents outputs of other firms except firm i.
Consider the solution of optimization with backward induction. Themarginal profit

of firm i(i=2, 3) is

∂πi/∂qi � θ − q−i − 2qi (1)

From the first order condition, for the given q1, the optimal response function of firm
i(i=2, 3) is

qi � (θ − q−i )/2

It is easy to see (θ − q−i ) � a − c − q−i ≥ a − p − q−i � θ − q−i ≥ 0. The
intersection point of two response curves is{

q2(q1) � (θ − q1)/3

q3(q1) � (θ − q1)/3
(2)

Formula (2) is the optimal strategy of firms 2 and 3 for q1.
In the first stage of game, firm 1 expects the outputs of firms 2 and 3 in formula (2)

and maximizes its profit, by solving the maximization problem

max
q1≥0

π1 � (θ − q−1 − q1)q1

The marginal profit of firm 1 is

dπ1/dq1 � (θ − 2q1)/3 (3)

Let dπ1/dq1 � 0, the Stackelberg equilibrium output is

qs1 � θ/2, qs2 � qs3 � θ/6 (4)

2.2 Multi-period Stackelberg Tripoly Game and the Stability of Equilibrium

In the traditional Stackelberg model in Sect. 2.1, there is a hypothesis that every firm
has complete information of the market, namely the three firms’ cost function and
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demand function are known to all. The firms have the required rationality: in the first
stage, firm 1 is able to predict the optimal strategies of q2 and q3 for a given q1; and in
the second stage, firms 2 and 3 could maximize their own profit function by observing
q1. However, such hypothesis mentioned is not realistic. For firms in the game, a more
realistic assumption is that they act with regard to their limited market experience and
other firms’ behaviors.

Based on the traditional Stackelberg triopoly game proposed in Sect. 2.1, there are
three hypotheses in the multi-period Stackelberg tripoly game in this section: firstly,
firms are subjected to bounded rationality and limited information about market; sec-
ondly, every period includes multi-period Stackelberg game of two stages in Sect. 2.1;
thirdly, firm 1 is able to estimate marginal profit in formula (3) with one unit change of
q1 according to its previous market experience. Firms 2 and 3 could estimate marginal
profits in formula (1) after observing q1.

Participants with bounded rationality adjust output qi(t+1) of next period according
to current output qi(t) (i=1, 2, 3) and estimation of marginal profit. We have output
adjustment dynamic equations as follows:⎧⎨

⎩
q ′
1 � q1 + v1q1∂π1/∂q1(q1)

q ′
2 � q2 + v2q2∂π2/∂q2(q ′

1, q2, q3)
q ′
3 � q3 + v3q3∂π3/∂q3(q ′

1, q2, q3)

where qi′ �qi(t+1), qi=qi(t), vi>0 represents output adjustment speed of firm i(i=1,
2, 3).

Substituting formula (1) and (3) into the equations, more detailed dynamic adjust-
ment equations can be obtained:⎧⎨

⎩
q ′
1 � q1 + v1q1(θ − 2q1)/3 � 0

q ′
2 � q2 + v2q2(θ − q ′

1 − q3 − 2q2) � 0
q ′
3 � q3 + v3q3(θ − q ′

1 − q2 − 2q3) � 0
(5)

q1′ on the right side of formula (5) indicates that in Stackelberg game firms 2 and 3
could observe current output of firm 1 in every period.

By such gradual adjustment, the final economic status depends on the fixed point of
the system (5). To solve the fixed point, let qi ′ �qi(i=1, 2, 3). The following algebraic
equations is obtained ⎧⎨

⎩
v1q1(θ − 2q1)/3 � 0
v2q2(θ − q1 − q3 − 2q2) � 0
v3q3(θ − q1 − q2 − 2q3) � 0

Eight fixed points are E0 � (0, 0, 0), E1 � (0, 0, θ /2), E2 � (0, θ /2, 0), E3 � (θ /2, 0,
0), E4 � (0, θ /3, θ /3), E5 � (θ /2, 0, θ /4), E6 � (θ /2, θ /4, 0), E7 � (θ /2, θ /6, θ /6).

Where E0 represents that every firm has no output; E1, E2 and E3 represent
monopoly firms 1, 2 and 3, respectively. E4 represents that firms 2 and 3 compete
in a Cournot game without firm 1, with equilibrium outputs of θ /3 and θ /3, respec-
tively. E5 and E6 represent that firms 1 and 3, firms 1 and 2 compete in a Stackelberg
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game; with equilibrium outputs of θ /2 and θ /4, respectively. E7 represents that the
three firms compete in a Stackelberg game, with equilibrium outputs of θ /2, θ /6 and
θ /6, respectively. E0,…, E7 are called boundary equilibria.

To discuss the locally asymptotic stability of fixed point Ei(i=0, 1,…,7), consider
the Jacobian matrix of system (5):

J �
⎡
⎣ 1 + v1(θ − 4q1)/3 0 0

−v2q2(1 + v1(θ − 4q1)/3 1 + v2(θ − q ′
1 − q3 − 4q2) −v2q2

−v3q3(1 + v1(θ − 4q1)/3 −v3q3 1 + v3(θ − q ′
1 − q2 − 4q3)

⎤
⎦
(6)

when q1 �0, J has a characteristic root λ � 1 + v1θ/3 > 1, so the fixed points of E0,
E1, E2, E4 are not stable.

For E3 � (θ /2, 0, 0),

J (E3) �
⎡
⎣1 − v1θ/3 0 0

∗ 1 + v2θ/2 0
∗ ∗ ∗

⎤
⎦

where * means the characteristic roots of J(E3) is unrelated to this element.
The characteristic root of J(E3) is λ � 1 + v2θ/2 > 1, so E3 is locally asymptotic

instability.
For E5 � (θ /2, 0, θ /4),

J (E5) �
⎡
⎣1 − v1θ/3 0 0

0 1 + v2θ/4 0
∗ ∗ ∗

⎤
⎦

The characteristic root of J(E5) is λ � 1 + v2θ/4 > 1, so E5 is locally asymptotic
instability.

For E6 � (θ /2, θ /4, 0),

J (E6) �
⎡
⎣1 − v1θ/3 ∗ 0

∗ ∗ ∗
0 0 1 + v3θ/4

⎤
⎦

The characteristic root of J(E6) is λ � 1 + v3θ/4 > 1, so E6 is locally asymptotic
instability.

By analyzing above, we get a proposition as follows.

Proposition Boundary equilibria E0, E1, …, E6 are not locally asymptotic stability.
Next we investigate the stability of Stackelberg equilibrium E7. We substitute for-

mula (4) into Jacobian matrix (6):

J (E7) �
⎡
⎣ 1 − v1θ/3 0 0

−v2θ (3 − v1θ )/18 1 − v2θ/3 −v2θ/6
−v3θ (3 − v1θ )/18 −v3θ/6 1 − v3θ/3

⎤
⎦
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The characteristic polynomial of J(E7) is

f (λ) � (λ − 1 + v1θ/3)g(λ)

where g(λ) is the characteristic polynomial of submatrix

(
1 − v2θ/3 −v2θ/6
−v3θ/6 1 − v3θ/3

)
,

that is

g(λ) �
∣∣∣∣λ − 1 + v2θ/3 v2θ/6

v3θ/6 λ − 1 + v3θ/3

∣∣∣∣ �
∣∣∣∣μ + v2θ/3 v2θ/6

v3θ/6 μ + v3θ/3

∣∣∣∣
� (μ + v2θ/3)(μ + v3θ/3) − (θ/6)2v2v3

� μ2 + θ (v2 + v3)/3μ + (θ2/12)v2v3

where μ � λ − 1.
Thus f (λ) � (μ + v1θ/3)g(λ) � 0 has three roots μ1 � −v1θ/3, μ2 � −(v2 +

v3 +
√
(v2 − v3)2 + v2v3)θ/6, μ3 � −(v2 + v3 − √

(v2 − v3)2 + v2v3)θ/6.

Because a sufficient condition of locally asymptotic stability of E7 is that all char-
acteristic roots satisfy −1 < λ < 1, which equals to −2 < μ < 0, (λ � μ+ 1). Since
μ2 < μ3, the sufficient condition of locally asymptotic stability of E7 is

μ1 � −v1θ/3 > −2 (7)

μ2 � −(v2 + v3 +
√
(v2 − v3)2 + v2v3)θ/6 > −2 (8)

μ3 � −(v2 + v3 −
√
(v2 − v3)2 + v2v3)θ/6 < 0 (9)

Formula (7) equals to v1 <6/θ . Formula (9) equals to v2 + v3 >
√
(v2 − v3)2 + v2v3.

Square ends of formula (9):

v22 + v23 + 2v2v3 > (v2 − v3)
2 + v2v3 � v22 + v23 − v2v3

The last inequality is clearly established. So formula (9) is established.
Formula (8) equals to v2 + v3 +

√
(v2 − v3)2 + v2v3 < 12/θ. That is√

(v2 − v3)2 + v2v3 < 12/θ − (v2 + v3)

Square ends of the formula above:

v2 + v3 − θv2v3/8 < 6/θ

That is v3 < (6 − v2θ )8/θ (8 − v2θ ).
By analyzing above, we get a theorem as follows:

Theorem The stability region of Stackelberg equilibrium E7 is S �
{(v1, v2, v3)|0 ≤v1 < 6/θ, v2 ≥ 0, 0 ≤ v3 < (6 − v2θ )8/θ (8 − v2θ )}.

The stability region of E7 is shown in Fig. 1.
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Fig. 1 Stability region of multi-period Stackelberg tripoly game equilibrium

The intersection point of S and v1 axis is (6/θ , 0, 0); intersection point of S and v2
axis is (0, 6/θ , 0); intersection point of S and v3 axis is (0, 0, 6/θ ).

In the multi-period Stackelberg game, traditional Stackelberg equilibrium outputs
could be arrived by adjusting firms’ outputs while keeping adjustment speed (v1, v2,
v3) ε S using dynamic Eq. (5). When the adjustment speed is not in stability region S,
we need the numerical simulation method to discuss the instability of E7.

Besides, the effect of adjustment speed on the speed of converging to equilibrium
is analyzed. Consider the nonlinear mapping q ′ � T(q) which is given by the system
(5), where q ′ � (q ′

1, q
′
2, q

′
3), q � (q1, q2, q3). q* is the Stackelberg equilibrium. From

the Taylor expansion:
T(q) � T(q∗) + Jq∗ · (q − q∗) + O(‖q− q∗‖2), where Jq∗ is the Jacobian matrix

of mapping T at q*. |O(‖q− q∗‖2 )| ≤ c‖q− q∗‖2, c > 0. Since q*is a fixed point
of T, for any q in the neighborhood of q*, q ′ � T(q) ≈ q∗ + Jq∗ · (q − q∗). Let
X � q − q∗, then X’ ≈ Jq∗ ·X. Thus in the neighborhood of q*, substitute the linear
mapping q ′ � Jq∗ · X for the nonlinear mapping q ′ � T(x) approximately. In this
neighborhood, the speed of q converging to q* depends on the speed of X converging
to 0.

Let λ1, λ2, λ3(λ1 	� λ2 	� λ3) are three characteristic roots of Jq∗. They
are in the unit circle. λ3 is a characteristic root of largest absolute value, that is
|λ3| � max{|λ1|, |λ2|, |λ3|}. It is easy to know the characteristic vectors a1, a2, a3

corresponding to λ1, λ2, λ3 respectively are linearly independent. For any x ∈ R3,

X = x1a1 + x2a2 + x3a3. Where x3 	� 0 is assumed. For a k linear mapping of X

J kq∗X = x1λk1a
1 + x2λk2a

2 + x3λk3a
3, we divide both ends by λk3,

J kq∗X
λk3

�x1(λ1/λ3)ka1 +

x2(λ2/λ3)ka2 + x3a3. We have lim
k→∞

J kq∗X
λk3

�x3a3, which illustrates that under the

assumption of x3 	� 0, when k → ∞, the speed of J kq∗X converging to 0 and that of
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Fig. 2 Output bifurcation diagram with respect to v1

λk3 converging to 0 have the same order. Therefore, under the assumption of nonlinear
mapping, for any q in a small neighborhood of q*, the speed of q converging to q*

approximate to that of λk3 converging to 0.
From the Theorems 13.5.3 and 13.5.4 (Robinson 2013), the largest Lyapunov expo-

nent of q which is in the small neighborhood of q* equals to ln|λ|. Where λ is the
characteristic root of largest absolute value of Jq∗. Since λ is in the unit circle, the
smaller the largest Lyapunov exponent is, the faster the speed of q0 converging to q*

is; the greater the largest Lyapunov exponent is, the slower the speed of q0 converging
to q* is.

3 Numerical Simulation

In this section, we present some complicated dynamic phenomena by numerical simu-
lation.We set parameters as follows: θ =0.8, v2 �3.5, v3 �3. From the stability region
of Stackelberg tripoly game equilibrium in Fig. 1, v1 �7.5 is the boundary point which
corresponds to the first bifurcation point in Fig. 2. From Fig. 2, equilibrium outputs
q1 �0.4, q2 �q3 �0.1333 which illustrates the first-move advantage in Stackelberg
model.

The largest Lyapunov exponent with respect to v1 is drawn in Fig. 3. The first,
second and third bifurcation point in Fig. 2 corresponds to L11 (7.4940, −0.0119),
L12 (9.1280, 0.0011) and L13 (9.3280, 0.0011) in Fig. 3, respectively. Before chaos
occurs, the largest Lyapunov exponents are all less than zero except bifurcation point;
after chaos occurs, the largest Lyapunov exponents are almost all greater than zero.

The profit bifurcation diagram with respect to v1 is drawn in Fig. 4. The average
profit diagram with respect to v1 is drawn in Fig. 5. We use the average profit of enter-
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Fig. 3 Largest Lyapunov exponent diagram with respect to v1

prises as the evaluation index to see if firms have the incentive for choosing chaos, and
the effect of the adjustment parameter on profits. It is easy to see in the stability region,
the average profits of three firms are equal to Stackelberg equilibrium profits. As v1
increases, the adjustment parameter exceeds the stability region. Before chaos occurs,
the average profit of firm 1 has an inverted U-shaped curve, which arrives maximum
at v1 �9.15. The average profit of firm 2 presents an increase–decrease–increase path.
The average profit of firm 3 is always increasing. The average profit of firm 1 is higher
than that of firm 3, and the average profit of firm 3 is higher than that of firm 2, which
illustrates that the leader firm still has classical game model’s first-move advantage.
The profit difference is caused by v2 >v3 entirely. Therefore, before chaos, firm 1
intends to adjust v1 to v1 �9.15. The system is in stable bifurcation of 2 and 4 cycles
at this time. When the adjustment parameter makes chaos happen, firms 1 and 3 may
achieve higher average profits. However, if the parameter has a slight fluctuation, their
profits will fluctuate dramatically. It is not a situation firms hope to see.

The strange attractors are shown from Figs. 6, 7, 8, and 9. We adjust v1 while
keeping v2 �3.5, v3 �3. The evolution progress of attractors could be observed as v1
increases. We calculate the fractal dimension using three-dimensional system formula
dL � 2 + λ1+λ2|λ3| . From formulas (7), (8) and (9), λ3 �−1.6133, λ2 �−0.3038, λ1 �
0.5705, dL=2.165, which implies that the system experiences chaos.

Next we investigate the sensitivity on initial values. From Figs. 10, 11, and 12, the
subgraph 1 and subgraph 2 represent the orbits of q1 with different initial values (q10,
q20, q30)� (0.5, 0.2, 0.2) and (q10, q20, q30)� (0.501, 0.2, 0.2). We take three values
of v1: v1 �5, v1 �9, v1 �9.8 which represents equilibrium, bifurcation and chaos in
the state of system respectively. As t increases, a tiny change � � 0.001 of q1 could
cause three situations with different v1. In Fig. 10, the two subgraphs are the same.
It could not change the equilibrium of q1 �0.4. In Fig. 11, the two subgraphs are
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Fig. 4 Profit bifurcation diagram with respect to v1

Fig. 5 Average profit diagram with respect to v1

the same. The system is in periodic bifurcation. In Fig. 12, this subtle change causes
a dramatic fluctuation of q1. It shows that the system has a sensitive dependence on
initial value of q1 in chaos.

The subgraph 1 and subgraph 2 represent the orbits of q2 with different initial values
(q10, q20, q30)� (0.5, 0.2, 0.2) and (q10, q20, q30)� (0.5, 0.201, 0.2) in Figs. 13, 14
and 15. As t increases, a tiny change � � 0.001 of q2 could cause three situations
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Fig. 6 Strange attractor for v1 �9.5, v2 �3.5, v3 �3

Fig. 7 Strange attractor for v1 �9.6, v2 �3.5, v3 �3

with different v1. In Fig. 13, the two subgraphs are the same. It could not change the
equilibrium of q2 �0.1333. In Fig. 14, the two subgraphs are the same. The system is
in periodic bifurcation. In Fig. 15, this subtle change causes a dramatic fluctuation of
q2. It shows that the system has a sensitive dependence on initial value of q2 in chaos.

The subgraph 1 and subgraph 2 represent the orbits of q3 with different initial values
(q10, q20, q30)� (0.5, 0.2, 0.2) and (q10, q20, q30)� (0.5, 0.2, 0.201) in Figs. 16, 17
and 18. As t increases, a tiny change � � 0.001 of q3 could cause three situations
with different v1. In Fig. 16, the two subgraphs are the same. It could not change the
equilibrium of q3 �0.1333. In Fig. 17, the two subgraphs are the same. The system is
in periodic bifurcation. In Fig. 18, this subtle change causes a dramatic fluctuation of
q3. It shows that the system has a sensitive dependence on initial value of q3 in chaos.

In this paper, we consider the delayed feedback method to control system (5),
which was proposed by Pyragas (1992, 1993). The main idea is to substitute partial
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Fig. 8 Strange attractor for v1 �9.7, v2 �3.5, v3 �3

Fig. 9 Strange attractor for v1 �9.8, v2 �3.5, v3 �3

information of output signal of the system for output signal of the system, and return
the system by time delay. A new control dynamic system is constructed as follows:⎧⎪⎨

⎪⎩
q ′
1 � q1 + v1q1(θ − 2q1)/3(1 + k)

q ′
2 � q2 + v2q2(θ − q ′

1 − q3 − 2q2)

q ′
3 � q3 + v3q3(θ − q ′

1 − q2 − 2q3)

(10)

The Jacobian matrix Jc(E7) of system (10) is

Jc(E7) �
⎡
⎣ 1 − v1θ/3(1 + k) 0 0

−v2θ (3 − v1θ )/18 1 − v2θ/3 −v2θ/6
−v3θ (3 − v1θ )/18 −v3θ/6 1 − v3θ/3

⎤
⎦

According to the characteristic equation of Jc(E7), and all characteristic roots locating
in unit circle, the value range of control factor k could be obtained. The characteristic
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Fig. 10 Two orbits of q1 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.501, 0.2,
0.2) and v1 �5

Fig. 11 Two orbits of q1 with different initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)�
(0.501, 0.2, 0.2) and v1 �9

roots of Jc(E7): fc(λ) � (λ−1+v1θ
/
3(1 + k))g(λ), g(λ) unchanged. From the proof

process of Proposition, k > v1θ
6 − 1. For v1 � 9.8, θ � 0.8, k > 0.3067.

Let k=0.4, the bifurcation diagram with respect to control factor k is shown in
Fig. 19. The largest Lyapunov exponent with respect to k is drawn in Fig. 20. The first,
second and third bifurcation point in Fig. 19 corresponds toL23 (0.3490,−0.0269),L22
(0.1140, −0.0024) and L21 (0.0520, 0.0024) in Fig. 20, respectively. Before equilib-
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Fig. 12 Two orbits of q1 with different initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)�
(0.501, 0.2, 0.2) and v1 �9.8

Fig. 13 Two orbits of q2 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.201,
0.2) and v1 �5

riumoccurs, the largest Lyapunov exponents are all greater than zero except bifurcation
point; after equilibrium occurs, the largest Lyapunov exponents are almost all less than
zero.

The effects of control factor k on output and profit before and after chaos are drawn
in Figs. 21 and 22. The outputs of manufactures finally stabilize at the equilibrium
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Fig. 14 Two orbits of q2 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.201,
0.2) and v1 �9

Fig. 15 Two orbits of q2 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.201,
0.2) and v1 �9.8

levels q1 �0.4, q2 �q3 �0.1333. The profits of manufactures finally stabilize at the
equilibrium levels π1 �0.0534, π2 �π3 �0.0178.

The simulation results illustrate that in a multi-period triopoly Stackelberg model
with sequential actions, with the increase of the speed of output adjustment, dynamic
Stackelberg equilibrium becomes unstable and stays in chaos for a long time.
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Fig. 16 Two orbits of q3 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.2, 0.201)
and v1 �5

Fig. 17 Two orbits of q3 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.2, 0.201)
and v1 �9

At last, we discuss the relation of largest Lyapunov exponent and iterative time by
numerical simulation. According to Fig. 3, we divide the interval of v1 into three inter-
vals (0,1.61),[1.61,5.9],(5.9,7.5) and take two values in every small interval. We give
the calculation data as Table 1 shows. As the largest Lyapunov exponents increases,
the iterative time is increasing, the speed of convergence to equilibrium is slowing.
The simulation verifies the theoretical result.
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Fig. 18 Two orbits of q3 with initial values (q10, q20, q30)� (0.5, 0.2, 0.2), (q10, q20, q30)� (0.5, 0.2, 0.201)
and v1 �9.8

Fig. 19 Bifurcation diagram with respect to control factor k

4 Conclusion

Stackelberg model is a dynamic model which is different from Cournot, Bertand
or Hotelling model. In this model, two players with different scales and power act
sequentially. This game rule applies to the leader firm and the follower’s strategy
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Fig. 20 Largest Lyapunov exponent diagram with respect to k

Fig. 21 Effects of control factor k on q1, q2, q3 (k=0.4)

behaviors in real market. It is a crucial model in traditional game theory, while there
are few literatures which apply complex oligopoly dynamics theory in it.

The Stackelberg model has been modified in the paper. Our model improves
dynamic adjustment equation of Peng and Lu (2015), which simplified the observing
decision-making variable of the leader’s actual output as a constant in every period.
We construct a triopoly game model, with one leader firm and two followers who
have bounded rationality and change the speed of output adjustment using marginal
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Fig. 22 Effects of control factor k on π1, π2, π3 (k=0.4)

Table 1 The relation of largest Lyapunov exponent and iterative time

Value of v1 Largest Lyapunov exponent Iterative time n

0.65 −0.1778 38

1.05 −0.3319 22

3.157 −0.5621 10

5.6 −0.5621 10

6.4940 −0.3319 21

6.894 −0.1778 38

profit. The two followers’ simultaneous move would take into account the effect of
the leader’s output on the demand in the market. In the equilibrium state, the outputs
of the followers are one-third of the leader’s.

A three-dimensional stability region is presented for the proposed multi-period
Stackelberg equilibrium in this paper. The system will only be stable when the speed
of output adjustment v1, v2 and v3 are in such a three-dimensional stability region.
The stability of fixed points in dynamic system is examined. Given fixed v2 and v3,
period bifurcation and chaos occur as v1 increases. The sensitivity on initial values
and the strange attractor are demonstrated. Fractal dimension is calculated in chaos
status. The leader’s adjustment speed has influence on convergence to equilibrium.
The greater the largest Lyapunov exponent is, the faster the speed of converging to
equilibrium is. In addition, we choose the average profit to discusswhether the increase
of adjustment speed of the leader is incentive for choosing chaos. The paths of three
firms in stages of periodic bifurcation and chaos are different. However, the leader
firm still remains first-move advantage outside the stability region. Finally, the system
is restored equilibrium by delay feedback control method.
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