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a b s t r a c t 

Few literatures apply complex oligopoly dynamics theory in games of incomplete infor- 

mation. This paper aims at analyzing dynamic behaviors of Bayesian game. A dynamic 

Cournot model with asymmetric information is proposed based on adaptive expectation 

and bounded rationality. Theoretical analysis draws two important conclusions: firstly, 

Bayesian Nash equilibrium of dynamic Cournot duopoly model with two players of adap- 

tive expectation is always globally asymptotically stable. Secondly, Bayesian Nash equilib- 

rium of dynamic Cournot duopoly model with players of adaptive expectation and gradient 

rule based on marginal profit is locally asymptotically stable only when parameters satisfy 

certain conditions. In our model, a firm of uncertain cost function is designed. A probabil- 

ity parameter θ of private type which differentiates high cost and low cost is introduced. 

Bifurcation, or even chaos with respect to θ , is performed by simulation which implies 

that large possibility of high-cost production yields easier chaos in duopoly market. High 

adjustment speeds of output form a three-dimensional strange attractors region. The un- 

stable system’s negative impact on equilibrium output and profit highlights the importance 

of system stability. Chaos control is in order to stabilize the equilibrium of the improved 

dynamic Cournot model with asymmetric information. 

© 2018 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

An oligopoly is a market form in which a market or industry is dominated by a small number of sellers. It is more

complex than monopoly and perfect competition. In such a typical market, a few firms control the market and provide the

whole supply. Therefore oligopolists have to consider not only the effects of their own strategies on consumer demands, but

also those of their opponents. According to players’ order of action, traditional game models could be divided into static and

dynamic game model. In static game models, Cournot model [9] and Bertrand model [6] are two famous models. Cournot

model was the first oligopoly model. In Cournot model, two firms produce homogeneous products and compete with output.

While sometimes firms make strategies of price. Bertrand model showed a significant model of price competition. If firms

have different scales and power, the weaker firm may act after observing the action of the stronger firm. We call them the

leader firm and the follower. Stackelberg model is such a dynamic model which is characterized by firms’ sequential actions

[25] . 
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In classic game theory, Nash equilibrium is an important concept. A large amount of references revolve around it. The

game models provide deterministic conclusions using Nash equilibrium. However, Lorenz discovered chaos in determinis- 

tic system in 1963. Analysis of chaos in economic system attracts researchers’ concern. Chaos theories applied to dynamic

oligopoly game model mainly combines traditional game theory with chaos dynamics theory. This methodology, which re-

laxes the hypothesis of participants’ complete rationality and complete information of market, has become an important

tool to analyze dynamics behaviors of oligarchs. If players follow “behavior rules”, Nash equilibrium would be unstable. 

Firstly, scholars relax the assumption of player’s complete rationality. To make the study more realistic, they put forward

kinds of rationality expectations, which formed the cornerstone of this field, such as bounded rationality, adaptive expec-

tation, naïve rationality, local monopolistic approach (LMA) and so on. Homogeneous products first attracted more concern.

In Cournot model, the output of Nash equilibrium had a possibility of the periodic and more complex phenomenon [16,23] .

Agiza et al. [1] discussed the stability conditions of the fixed points. In face of diseconomies of scale, bounded rational

and adaptive duopolists were shown to experience chaos [11] . Yi and Zeng [28] demonstrated that the stability of Nash

equilibrium strongly depended on the adjustment speed of bounded rationality player. 

Other researchers assume that firms have nonlinear demand and cost functions to increase the complexity of dynamic

game. Ahmed and Elettreby [4] introduced a multi-market Cournot model using Puu’s [22] approach. Bischi et al. [7] consid-

ered a model with fixed fraction of firms in two complementary groups: Best Reply and LMA adjustment. Cournot-Bertrand

mixed duopoly game offered a new research possibility. Two firms competing with price and output respectively came to

some different conclusions. Ma and Pu [17] found that either the change of output modification speed or that of price

modification speed would cause the market to the chaotic state. Andaluz et al. [5] pointed out that players’ behavior rule

determined the local stability of the Nash equilibrium, which was irrelevant to the competition type. 

The effect of differentiated goods on chaos is also an interesting topic in this field. Yu and Yu [29] considered players’

dynamic adjustment process in Hotelling model. A higher speed of price adjustment facilitated a periodic or even chaotic

status. Ahmed et al. [3] derived the demand function from a CES utility function. Agliari et al. [2] and Brianzoni et al. [8] also

improved a Cournot or Bertrand model to study a differentiated product model. They demonstrated that the differentiation

degree of product destabilized the Nash equilibrium, while some researchers believed that the differentiation degree of

product promoted the Nash equilibrium [14] . 

Besides static model of Cournot, Bertrand and Hotelling, dynamic model such as Stackelberg model also attracts re-

searchers’ concern. Peng and Lu [21] used backward induction to solve Stackelberg model and discussed the local stability

of equilibrium. In Peng et al.’s [20] paper, they assumed that firms announced plan products sequentially in planning phase

and acted simultaneously in production phase. The model parameters would drive chaos. 

Researchers reach a consensus on the result that delay rationality enlarged stability region [10,12,15,18] . Because chaos

means that the system is far away from equilibrium, effective measures should be taken to control. Yang et al. [27] limited

chaos to periodic bifurcation by imposing constraints on difference equation. Ott et al. [19] first put forward a chaos control

method, which is called OGY method. Pyragas [24] proposed a delayed feedback method most scholars focused on [13,26] . 

Complete information means each player understands payoff functions of others, and all payoff functions are common 

knowledge to everyone. Players are able to expect opponent’s action and make the optimal response. In many economy and

management issues, this hypothesis could not be reached. For instance, in Prisoner’s Dilemma, player’s opponent may be

rational or irrational. In negotiations, the opponent may be tough or tolerant. In firms’ output and price competition forms,

cost function of the counterpart may be high or low. The private information makes opponents’ payoff function uncertain.

Accordingly study on game of incomplete information accords nearly with actual economic situation. In similar research

articles, although considering bounded rationality and asymmetric information, whether Bayesian Nash equilibrium could 

be achieved by dynamic system is not demonstrated. 

Although the above references revolve around incomplete rationality, incomplete information with bounded rationality 

is neglected. Therefore, relaxing players’ complete information is a noteworthy issue. Combining players’ incomplete infor-

mation with incomplete rationality and chaotic theory is one of contributions this paper considers. Specifically, a dynamic

Cournot duopoly model with asymmetric information is proposed. The uncertain cost function introduces a probability pa-

rameter of private type which gives some new message. The numerical simulation presents that large possibility of high-cost

production yields easier chaos in duopoly market. The second innovation is that we prove that Bayesian Nash equilibrium

could be achieved by the evolution of dynamic system. The third one is that the globally asymptotic stability condition of

Bayesian Nash equilibrium is given. Moreover, chaos is controlled to stabilize the equilibrium by delayed feedback method. 

The paper is arranged as follows. In Section 3 , a static Cournot duopoly model with complete rationality and asymmetric

information is investigated. The Bayesian Nash equilibrium is solved. In Section 4 , a dynamic Cournot duopoly model with

adaptive expectation and asymmetric information is constructed. In Section 5 , a dynamic Cournot duopoly model with het-

erogeneous expectations and asymmetric information is formulated. The globally and locally asymptotic stability of Bayesian

Nash equilibrium in the above sections are analyzed. In Section 6 , some simulation results are presented. In Section 6, we

draw some conclusions through theoretical analysis and numerical simulation. 

2. Bayesian Nash equilibrium of static Cournot duopoly model with complete rationality and asymmetric information 

Traditional game theory models could be divided into two types: games of complete and incomplete informa-

tion. Bayesian Nash equilibrium is mainly used to discuss the equilibrium state in static incomplete (asymmetric) in-
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formation game model. The definition is as follows. The payoff function of player i ( = 1, 2,…n ) is type-contingent:

u i = u i ( q 1 , q 2 , · · · q n ; c 1 , c 2 , · · · c n ) . q i is player i ’s action. c i is player i ’s private type. c i is known to player i , while it

is a random variable with a known probability distribution for other players (except player i ). Player i ’s strategy is

a mapping from the type space T i to the action space A i : s i ( c i ) = q i . Where c i ∈ T i , q i ∈ A i . The strategy combination

( s i 
∗(·) , s −i 

∗(·)) (where s −i 
∗(·) = ( s 1 

∗(·) , · · · s i −1 
∗(·) , s i +1 

∗(·) , · · · s n 
∗(·)) ) is Bayesian Nash equilibrium of incomplete informa-

tion static game. For a fixed s ∗−i 
(·) , any c i ∈ T i , s i 

∗( c i ) = q i 
∗, player i maximizes the conditional expectation payoff, that

is s i 
∗( c i ) = arg max 

q i 

E p i ( u 1 ( s i 
∗( t −i ) , q i ; t 1 , t 2 , · · · t n )) . where p i is player i ’s private type. Other players’ type is marked as

c −i = ( c 1 , ..., c i −1 , c i +1 , ... c n ) . The conditional probability of player i is p i = p i ( c −i | c i ) . The concept of Bayesian Nash equilibrium

is used to analyze a static duopoly Cournot model with complete rationality and asymmetric information in the following. 

It is assumed that there are firm 1 and firm 2 in the market. They produce homogeneous products and compete with out-

put. Their outputs are marked as q 1 and q 2 . The inverse demand function of the market is P ( Q ) = a - Q , where Q = q 1 + q 2 is the

market supply. Firm 1 has a production cost function C 1 ( q 1 ) = c 1 ·q 1 , in which the marginal cost c 1 is known to each other.

Firm 2 has a production cost function C 2 ( q 2 ) = c 2 ·q 2 . The marginal cost c 2 , which is private information, could take two val-

ues c h = c 1 + ε, c l = c 1 − ε ( c 1 � 0 , c 2 � 0 , ε � 0) , while the probability distribution P ( c 2 = c h ) = θ, P ( c 2 = c l ) = 1 − θ(θ ∈
(0 , 1)) is known to both firms. It is easy to know the mathematical expectation of c 2 is 

E c 2 = θ ( c 1 + ε) + (1 − θ )( c 1 − ε) = c 1 + (2 θ − 1) ε 

We have the hypothesis of parameters satisfying the condition: 

a − c 1 � 2 ε (1)

To solve Bayesian Nash equilibrium of static Cournot duopoly model with incomplete information, we need to figure out

the best reply function of two firms. 

First of all, we consider the best reply function of firm 2. Given q 1 and the private marginal cost c 2 , firm 2 chooses q 2 ( c 2 )

to maximize his profit function namely solving the maximization problem: 

max 
q 2 ( c 2 ) 

π2 = (a − q 1 − q 2 ( c 2 ) − c 2 ) q 2 ( c 2 ) 

His marginal profit is 

∂ E π2 /∂ q 2 = a − q 1 − c 2 − 2 q 2 ( c 2 ) (2)

From the first order condition ∂ E π2 /∂ q 2 = 0 , the best reply function of firm 2 is 

q 2 ( q 1 ; c 2 ) = 

{
(a − c 2 − q 1 ) / 2 q 1 ≤ a − c 2 

0 q 1 � a − c 2 
c 2 = c h , c l (3)

Or 

q 2 ( q 1 ; c h ) = 

{
(a − c h − q 1 ) / 2 q 1 ≤ a − c h 

0 q 1 � a − c h 

q 2 ( q 1 ; c l ) = 

{
(a − c l − q 1 ) / 2 q 1 ≤ a − c l 

0 q 1 � a − c l 

The mathematical expectation of the best reply function q 2 with respect to q 1 and c 2 is 

E q 2 = θq 2 ( q 1 ; c h ) + (1 − θ ) q 2 ( q 1 ; c l ) 

= 

{ 

(a − c 1 + (1 − 2 θ ) ε − q 1 ) / 2 q 1 ≤ a − c h 
(1 − θ )(a − c 1 + ε − q 1 ) / 2 a − c h ≺ q 1 ≤ a − c l 

0 q 1 � a − c l 

(4)

Now consider the best reply function of firm 1. 

Firm 1 could not obtain marginal cost c 2 of firm 2, but he knows its probability distribution. Thus firm 1 is able to

maximize his mathematical expectation of profit only by determining q 1 , i.e., 

max 
q 1 ( c 2 ) 

E π1 = E(a − q 1 − q 2 ( c 2 ) − c 1 ) q 1 = (a − q 1 − E q 2 ( c 2 ) − c 1 ) q 1 

The marginal profit of firm 1 is 

∂ E π1 /∂ q 1 = a − E q 2 ( c 2 ) − c 1 − 2 q 1 (5)

From the first order condition ∂E π1 / ∂ q 1 = 0 , the best reply function of firm 1 is 

q 1 (E q 2 ) = 

{
(a − c 1 − E q 2 ( c 2 )) / 2 E q 2 ( c 2 ) ≤ a − c 1 

0 E q 2 ( c 2 ) � a − c 1 
(6)

Where Eq is given by formula (4) . 
2 



104 W. Yu, Y. Yu / Commun Nonlinear Sci Numer Simulat 63 (2018) 101–116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We propose a set of hypotheses of complete information. 

Firstly, firm 1 could expect the best reply function of firm 2 in formula (3) , solve the mathematical expectation of best

reply function in formula (4) , and determine his best reply in formula (6) . 

Secondly, firm 2 could expect the best reply of firm 1 in formula (6) and determine his best reply in formula (3) . 

Based on the above hypotheses, from formula (3) , (4) and (6) , Bayesian Nash equilibrium could be calculated. 

Proposition 1. If parameters satisfy formula (1) , firm 2’s mathematical expectation of best reply function is E q 2 = (a − c 1 − q 1 +
(1 − 2 θ ) ε) / 2 . 

Proof. From formula (4) , if neither E q 2 = 0 nor E q 2 = (1 − θ )(a − c 1 + ε − q 1 ) / 2 could establish, Proposition 1 is proved. 

Firstly, if E q 2 = 0 , from formula (4) and (6) , q 1 � a − c l = a − c 1 + ε, q 1 = (a − c 1 ) / 2 . However, (a − c 1 ) / 2 � a − c 1 + ε could

not establish. Thus E q 2 = 0 could not establish either. 

Secondly, if E q 2 = (1 − θ )(a − c 1 + ε − q 1 ) / 2 , we have E q 2 ≤ a − c 1 . So from formula (6) : q 1 = (a − c 1 − (1 − θ )(a − c 1 +
ε − q 1 ) / 2) / 2 . By calculation, q 1 = ((1 + θ )(a − c 1 ) − (1 − θ ) ε) / (3 + θ ) . However, under the assumption of formula (1) , q 1 �
a − c 1 − ε could not establish. 

Since q 1 � a − c 1 − ε is equivalent to ((1 + θ )(a − c 1 ) − (1 − θ ) ε) / (3 + θ ) � a − c 1 − ε, namely (1 + θ ) ε � a − c 1 . This is

inconsistent with formula (1) . 

Thus E q 2 = (1 − θ )(a − c 1 + ε − q 1 ) / 2 is not possible either. 

Finally, E q 2 = (a − c 1 − q 1 + (1 − 2 θ ) ε) / 2 . �

Proposition 2. If parameters satisfy formula (1) , Bayesian Nash equilibrium of static Cournot duopoly model with asymmetric

information is: 

q 1 
∗ = (a − c 1 + (2 θ − 1) ε) / 3 (7) 

q 2 
∗( c 2 ) = 

{
(a − c 1 − (1 + θ ) ε) / 3 c 2 = c h 
(a − c 1 + (2 − θ ) ε) / 3 c 2 = c l 

(8) 

Proof. Firstly, if E q 2 ≤ a − c 1 , from formula (6) and (5) , we have: 

q 1 = (a − c 1 − E q 2 ) / 2 = (a − c 1 − (a − c 1 − q 1 + (1 − 2 θ ) ε / 2 )) / 2 

The solution of this equation is q 1 
∗ = (a − c 1 + (1 − 2 θ ) ε) / 3 , so formula (7) establishes. 

From formula (3) , when q ∗
1 

≤ a − c h , q ∗
2 
( c 2 ) = { (a − c 1 − (1 + θ ) ε) / 3 c 2 = c h 

(a − c 1 + (2 − θ ) ε) / 3 c 2 = c l 
therefore formula (8) establishes. But

E q 2 
∗(c) ≤ a − c 1 and q 1 

∗ ≤ a − c h need to be verified. 

Easy to know, E q 2 
∗(c) ≤ a − c 1 is equivalent to (1 − 2 θ ) ε ≤ a − c 1 and q 1 

∗ ≤ a − c h is equivalent to (1 + θ ) ε ≤ a − c 1 . �
Thus on the hypothesis of formula (1) , we have proved Proposition 2 . 

In this section, under the rationality assumption of Bayesian Nash equilibrium, a static Bayesian Nash equilibrium of

Cournot model with asymmetric information is given. The equilibrium output of firm 1 is q 1 
∗ = (a − c 1 + (2 θ − 1) ε) / 3 ,

which implies that the greater a or θ is, the greater the equilibrium output of firm 1 is; and the greater the marginal cost

c 1 is, the smaller the equilibrium output of firm 1 is. The equilibrium strategy of firm 2 is 

q 2 
∗( c 2 ) = 

{
(a − c 1 − (1 + θ ) ε) / 3 c 2 = c h 
(a − c 1 + (2 − θ ) ε) / 3 c 2 = c l 

, 

which is related to his private type, that is the marginal cost c 2 . The greater a is, the greater the equilibrium output of firm

2 is. The greater c 1 or θ is, the smaller the equilibrium output of firm 2 is. In particular, q 2 
∗( c l ) > q 2 

∗( c h ). 

3 . The stability of Bayesian Nash equilibrium of dynamic Cournot duopoly model with adaptive expectation and 

asymmetric information 

In most situations, firms could not have the rationality which is assumed in Section 3 , and they may not have complete

information about market demand and production cost functions. Therefore, there are two problems. Firstly, could Bayesian

Nash equilibrium be achieved? Secondly, is Bayesian Nash equilibrium stable? To answer the questions, we improve the

Cournot duopoly model in Section 3 and give the dynamic game model. We assume that the probabilities that firm 1 meets

firm 2 of high cost and low cost in the market are θ and 1 −θ respectively in every period t ( = 1, 2, 3, …), and every firm

adjusts his own output with adaptive expectation rule, namely firms adjusting output of next period according to his own

output of previous period and an estimation of the best reply. Then the dynamic adjustment equations are: 
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{ 

q 1 
′ = α1 q 1 + ( 1 − α1 )(a − c 1 − θq 2 h − (1 − θ ) q 2 l ) / 2 

q 2 h 
′ = α2 q 2 h + (1 − α2 )(a − c h − q 1 ) / 2 

q 2 l 
′ = α2 q 2 l + (1 − α2 )(a − c l − q 1 ) / 2 

(9)

Where q i ’ is firm i ’s ( i = 1, 2 h, 2 l ) output of next period, and q i is firm i ’s output of current period. q 2 h = q 2 ( c h ) , q 2 l =
q 2 ( c l ) . Easy to know, Bayesian Nash equilibrium achieved from formula (7) and (8) is the unique fixed point of formula (9) .

We could prove the following proposition: 

Proposition 3. On the hypothesis of adaptive expectation, Bayesian Nash equilibrium of dynamic Cournot duopoly model with

asymmetric information is always globally asymptotically stable. 

Proof. To illustrate the stability of Bayesian Nash equilibrium, the dynamic equations (9) is written as 

X(t + 1) = JX (t) + b t = 0 , 1 , 2 · ··
Where 

X(t) = ( q 1 (t ) , q 2 h (t ) , q 2 l (t )) T , 

b = ((1 − α1 )(a − c 1 ) / 2 , (1 − α2 )(a − c 1 − ε) / 2 , (1 − α2 )(a − c 1 + ε) / 2)) T , 

J = 

[ 

α1 −(1 − α1 ) θ/ 2 −(1 − α1 )(1 − θ ) / 2 

−(1 − α2 ) / 2 α2 0 

−(1 − α2 ) / 2 0 α2 

] 

The characteristic polynomial of J is 

f (λ) = | λI − J | = 

∣∣∣∣∣
λ − α1 (1 − α1 ) θ/ 2 (1 − α1 )(1 − θ ) / 2 

(1 − α2 ) / 2 λ − α2 0 

(1 − α2 ) / 2 0 λ − α2 

∣∣∣∣∣
= −(1 − α2 ) / 2 

∣∣∣∣(1 − α1 ) θ/ 2 (1 − α1 )(1 − θ ) / 2 

0 λ − α2 

∣∣∣∣ + (λ − α2 ) 

∣∣∣∣ λ − α1 (1 − α1 )(1 − θ ) / 2 

(1 − α2 ) / 2 λ − α2 

∣∣∣∣. 
= (λ − α2 )((λ − α1 )(λ − α2 ) − (1 − α1 )(1 − α2 ) / 4 ) 

Thereby one characteristic root of f ( λ) is λ1 = α2 ∈ (0 , 1) . To solve the other two characteristic roots of f ( λ), we consider

the equation 

(λ − α1 )(λ − α2 ) − (1 − α1 )(1 − α2 ) / 4 = 0 

or 

4 λ2 − 4( α1 + α2 ) λ + α1 α2 − (1 − α1 )(1 − α2 ) / 4 = 0 

The other two characteristic roots of f ( λ) are 

λ±= ( α1 + α2 ±
√ 

( α1 + α2 ) 
2 − 4 α1 α2 + (1 − α1 )(1 − α2 ) ) / 2 

The locally asymptotic stability condition for Bayesian Nash equilibrium is 1 � λ+ � λ− � −1 . 

λ+ ≺ 1 is equivalent to √ 

( α1 + α2 ) 
2 − 4 α1 α2 + (1 − α1 )(1 − α2 ) ≺ 2 − ( α1 + α2 ) 

Square ends of the formula and have the following inequality 

(1 − α1 )(1 − α2 ) / 4 ≺ (1 − α1 )(1 − α2 ) 

This always holds for αi ∈ (0 , 1) , i = 1 , 2 . 

λ− � −1 is equivalent to 

2 + α1 + α2 �
√ 

( α1 + α2 ) 
2 − 4 α1 α2 + (1 − α1 )(1 − α2 ) 

Square ends of the formula 

4 + 4( α1 + α2 ) � (1 − α1 )(1 − α2 ) 

This always holds for α ∈ (0 , 1) , i = 1 , 2 . 
i 
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Let u 1 , u 2 , u 3 is the eigenvector of λ1 , λ+ , λ- respectively. Since λ1 , λ+ , λ- are different, u 1 , u 2 , u 3 are linearly indepen-

dent. Any initial value X(0) can be represented as X(0 ) = k 1 u 1 + k 2 u 2 + k 3 u 3 . Therefore we have 

X(t + 1) = J k +1 X(0) + ( 
k ∑ 

t=0 

J t ) b = k 1 λ
k +1 u 1 + k 2 λ

k +1 
+ u 2 + k 3 λ

k +1 
− u 3 + ( 

k ∑ 

t=0 

J t ) b, ( J 0 = I) 

When t → ∞ , X( t ) converges to (I − J) −1 b, where 

(I − J) −1 = 

1 

3 

[ 

4 / (1 − α1 ) −2 θ/ (1 − α2 ) −2(1 − θ ) / (1 − α2 ) 
−2 / (1 − α1 ) (3 + θ ) / (1 − α2 ) (1 − θ ) / (1 − α2 ) 
−2 / (1 − α1 ) θ/ (1 − α2 ) (4 − θ ) / (1 − α2 ) 

] 

(I − J) −1 b = ( q 1 
∗, q 2 ∗( c h ) , q 2 

∗( c l )) . �

In this section, the result illustrates that under the assumption of two players’ adaptive expectation, the Bayesian Nash

equilibrium is always globally asymptotically stable. It is a conclusion different from that of the existing references. In pre-

vious literatures, the equilibrium is locally asymptotically stable only when parameters satisfy certain conditions. 

4 . The stability of Bayesian Nash equilibrium of dynamic Cournot duopoly model with heterogeneous expectations 

and asymmetric information 

In most situations, firms use heterogeneous expectations more frequently. It is assumed that firm 1 has gradient rule

based on marginal profit in Section 4 , i. e., he adjusts output of next period according to his output of current period and

estimation of marginal profit, while firm 2 uses adaptive expectation rule. The dynamic adjustment equations are: { 

q 1 
′ = q 1 + v q 1 (a − c 1 − θq 2 h − (1 − θ ) q 2 l − 2 q 1 ) 

q 2 h 
′ = αq 2 h + (1 − α)(a − c 2 h − q 1 ) / 2 

q 2 l 
′ = αq 2 l + (1 − α)(a − c 2 l − q 1 ) / 2 

(10) 

Where v �0 represents firm 1’s speed of output adjustment. 

Fixed points of formula (10) are the solutions of algebraic equations as follows. { 

q 1 (a − c 1 − θq 2 h − (1 − θ ) q 2 l − 2 q 1 ) = 0 

(a − c 2 h − q 1 ) / 2 − q 2 h = 0 

(a − c 2 l − q 1 ) / 2 − q 2 l = 0 

The two fixed points are boundary equilibrium E 0 = (0 , (a − c 2 h ) / 2 , (a − c 2 l ) / 2 ) and Bayesian Nash equilibrium E ∗ =
( q 1 

∗, q 2 ∗( c h ) , q 2 ∗( c l )) which is given by formula (7) and (8) . The Jacobian matrix of formula (10) is 

J = 

[ 

1 + v (a − c 1 − θq 2 h − (1 − θ ) q 2 l − 4 q 1 ) −v q 1 θ −v q 1 (1 − θ ) 
−(1 − α) / 2 α 0 

−(1 − α) / 2 0 α

] 

At boundary equilibrium E 0 , the Jacobian matrix is 

J 0 = 

[ 

1 + 

1 
2 
v (a − c 1 − (1 − 2 θ ) ε) 0 0 

−(1 − α) / 2 α 0 

−(1 − α) / 2 0 α

] 

Under the assumption of formula (1) , one characteristic root of J 0 is λ1 = 1 + 

1 
2 v (a − c 1 − (1 − 2 θ ) ε) � 1 , the other two

are λ2 = λ3 = α ∈ (0 , 1) . Thus we have the following proposition. 

Proposition 4. If firm 1 chooses an adjustment rule based on marginal profit and firm 2 adopts an adaptive expectation rule,

then the boundary equilibrium E 0 = (0 , (a − c 2 h ) / 2 , ( a − c 2 l ) / 2 ) is a saddle point. 

At Bayesian Nash equilibrium E ∗ , the Jacobian matrix is 

J ∗ = 

[ 

1 − 2 v q 1 −θv q 1 −(1 − θ ) v q 1 
−(1 − α) / 2 α 0 

−(1 − α) / 2 0 α

] 

, 

where q 1 = q 1 
∗. 

The characteristic polynomial of J ∗ is 

f (λ) = | λI − J ∗| = 

∣∣∣∣∣
λ + 2 v q 1 − 1 θv q 1 (1 − θ ) v q 1 
(1 − α) / 2 λ − α 0 

(1 − α) / 2 0 λ − α

∣∣∣∣∣
= −1 − α

2 

∣∣∣∣θv q 1 (1 − θ ) v q 1 
0 λ − α

∣∣∣∣ + (λ − α) 

∣∣∣∣λ + 2 v q 1 − 1 (1 − θ ) v q 1 
(1 − α) / 2 λ − α

∣∣∣∣
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Fig. 1. The stability region of Bayesian Nash equilibrium. 

 

 

 

 

 

= (λ − α)((λ + 2 v q 1 − 1)(λ − α) − (1 − α)(1 − θ ) v q 1 / 2 − (1 − α) θv q 1 / 2 ) 

Therefore f ( λ) has one characteristic root λ1 = α ∈ (0 , 1) , the other two characteristic roots satisfy 

λ2 + (2 v q 1 − 1 − α) λ − ((2 v q 1 − 1) α + (1 − α) v q 1 / 2 ) = 0 

The other two characteristic roots are 

λ±= (1 + α − 2 v q 1 ±
√ 

(1 + α − 2 v q 1 ) 
2 + 2(3 α + 1) v q 1 − 4 α) / 2 

The locally asymptotic stability condition for Bayesian Nash equilibrium E ∗ is 1 � λ+ � λ− � −1 , where λ+ ≺ 1 is equiv-

alent to √ 

(1 + α − 2 v q 1 ) 
2 + 2(3 α + 1) v q 1 − 4 α ≺ 2 − (1 + α − 2 v q 1 ) 

Square ends of the formula and have the following inequality: 

2(3 α + 1) ≺ 8 

From α ∈ (0, 1), λ+ ≺ 1 holds. 

λ− � −1 is equivalent to 

2 + (1 + α − 2 v q 1 ) �
√ 

(1 + α − 2 v q 1 ) 
2 + 2(3 α + 1) v q 1 − 4 α

Square ends of the formula and have the following inequality: 

4 + 4(1 + α − 2 v q 1 ) � 2(3 α + 1) v q 1 − 4 α

Therefore v ≺ 4(1 + α) / (5 + 3 α) q 1 holds. So we get Proposition 5 . 

Proposition 5. If firm 1 chooses a gradient expectation rule and firm 2 adopts an adaptive expectation behavior, when v ≺
4(1 + α) / (5 + 3 α) q ∗1 , Bayesian Nash equilibrium is locally asymptotically stable. 

From Proposition 5 , we obtain the stability region S for Bayesian Nash equilibrium, that is 

S = 

{
α ∈ (0 , 1) , 0 ≺ v ≺ V 

GA 
}
, 

where the threshold is 

V 

GA (α) = 4( 1 + α) / ( 5 + 3 α) q 1 
∗ (11)

It is also the boundary curve of stability region S. The intersection point of the boundary curve and α = 0 is A (0, 4/5 q 1 
∗).

The intersection point of the boundary curve and α= 1 is B (1, 1/ q 1 
∗). From ∂ V 

GA / ∂ α�0, ∂ 2 V 

GA / ∂ α2 ≺0, V 

GA ( α)which is shown

as Fig. 1 , is a strictly increasing and concave curve. 

When( α, v ) ∈ S(Stability Region), Bayesian Nash equilibrium is locally asymptotically stable, while if (α, v ) ̄∈ S , a bifurcation

even chaos phenomenon could be seen by numerical simulation. 
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Fig. 2. Bayesian Nash equilibrium with respect to α1 . 

Fig. 3. Bayesian Nash equilibrium with respect to α2 . 

 

 

We substitute q 1 
∗ = (a − c 1 + (2 θ − 1) ε) / 3 into formula (11) and get the following equation: 

V 

GA (α) = 12(1+ α) / (5 + 3 α)( a − c 1 + (2 θ − 1) ε) 

From this expression, we obtain Proposition 6 . 

Proposition 6. Consider two heterogeneous firms. It is assumed that firm 1 chooses a gradient expectation rule and firm 2 adopts

an adaptive expectation behavior, the stability of Bayesian Nash equilibrium increases as the parameter α or c increases, and it
1 
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Fig. 4. Bifurcation diagram with respect to α. 

Fig. 5. Bifurcation diagram with respect to v . 

 

 

 

 

decreases as the parameter a or θ increases. When θ � 1 
2 , the stability decreases as the parameter ɛ increases. When θ ≺ 1 

2 , the

stability increases as the parameter ɛ increases. 

5 . Simulation 

In this section, lots of behaviors of dynamic Cournot duopoly model with asymmetric information are presented by sim-

ulation. A series of bifurcation and chaos with respect to α1 , α2 , v and θ , largest Lyapunov exponent, strange attractors, and

sensitivity on initial values are shown in figures. Firstly, we consider the stability of equilibrium with asymmetric informa-
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Fig. 6. Bifurcation diagram with respect to θ . 

Fig. 7. Lyapunov exponent diagram with respect to v . 

 

 

 

 

 

tion and two players with adaptive expectation in Section 4 . We set parameters as follows: a = 5, c 1 = 2, ε = 1, θ = 0.6, thus

c h = 3, c l = 1, q 1 
∗ = 1.0 6 67, q 2 h 

∗ = 0.46 67, q 2 l 
∗ = 1.46 67. 

From formula (9) , let α2 = 0.6, we get Bayesian Nash equilibrium with respect to α1 as Fig. 2 shows. Let α1 = 0.5, we get

Bayesian Nash equilibrium with respect to α2 as Fig. 3 shows. Although α1 and α2 are two different parameters, Bayesian

Nash equilibrium curves in Figs. 2 and 3 are almost the same, which verifies Proposition 3: consider two players with

adaptive expectation, Bayesian Nash equilibrium of dynamic Cournot duopoly model with asymmetric information is always

globally asymptotically stable. 
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Fig. 8. Lyapunov exponent diagram with respect to θ . 

Fig. 9. Strange attractor for v = 1.22. 

 

 

 

 

 

 

 

 

 

 

 

 

Next we consider the stability of equilibrium with two heterogeneous expectations players and asymmetric informa-

tion in Section 5 . We set parameters as follows: a = 5, c 1 = 2, ε = 1, θ = 0.6, thus c h = 3, c l = 1, q 1 
∗ = 1.0 6 67, q 2 h 

∗ = 0.46 67,

q 2 l 
∗ = 1.4667. 

From formula (10) , let v = 0.85, we get bifurcation diagram with respect to α as Fig. 4 shows; let α = 0.2, we get bi-

furcation diagram with respect to v as Fig. 5 shows. From the stability region for Bayesian Nash equilibrium in Fig. 1 , ( α,

v ) = (0.4167, 0.85) in Fig. 1 corresponds to the bifurcation point α = 0.4167 in Fig. 4 . ( α, v ) = (0.2, 0.8035) in Fig. 1 corresponds

to the bifurcation point v = 0.8035 in Fig. 5 . The outputs of firms have the experience from bifurcation to equilibrium as α
increases, and it has the experience from equilibrium to bifurcation and even chaos as v increases. Adaptive expectation is

such a convex combination of firm 2’s period output and reply function. The bigger α is, the more attention he has to pay

period output and the less attention he has to pay reply function. v is firm 2’s adjustment speed of output. The bigger v is,

the easier chaos could occur. 

Fix a = 5, c 1 = 2, ε = 1, let α = 0.2, v = 1, we get bifurcation diagram with respect to θ as Fig. 6 shows. The out-

puts of firms have the experience from equilibrium to bifurcation and even chaos as θ increases. θ is a probabil-

ity parameter which describes the uncertainty cost function. Large probability of high-cost production yields easier

chaos in duopoly market. Furthermore, from Proposition 2 , in formula (7) and (8) , q ∗ = (a − c + (2 θ − 1) ε) / 3 , q ∗( c ) =
1 1 2 2 
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Fig. 10. Two orbits of q 1 with initial values for v = 1.22. 

Notes: The blue curve represents a group of initial values ( q 10 , q 2 h 0 , q 2 l 0 ) = (1.1, 0.6, 1.6). The red curve represents a group of initial values ( q 10 , q 2 h 0 , 

q 2 l 0 ) = (1.101, 0.6, 1.6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Two orbits of q 2 h with initial values for v = 1.22. 

Notes: The blue curve represents a group of initial values ( q 10 , q 2 h 0 , q 2 l 0 ) = (1.1, 0.6, 1.6). The red curve represents a group of initial values ( q 10 , q 2 h 0 , 

q 2 l 0 ) = (1.1, 0.601, 1.6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

{
(a − c 1 − (1 + θ ) ε) / 3 c 2 = c h 
(a − c 1 + (2 − θ ) ε) / 3 c 2 = c l 

. q 1 
∗ increases and q 2 h 

∗, q 2 l 
∗ decrease as the parameter θ increases, which is shown in

Fig. 6 . 

Figs. 7 and 8 are the largest Lyapunov exponents with respect to v and θ . The first, second and third bifurcation point

in Fig. 5 corresponds to A (0.8030, −0.0125), B (1.1090, −0.0104) and C (1.1560, −0.0083) in Fig. 7 , respectively. The first,

second and third bifurcation point in Fig. 6 corresponds to D (0.2890, −0.0199), E (0.7740, −0.0020) and F (0.8450, −0.0100)

in Fig. 8 , respectively. When the largest Lyapunov exponent is larger than zero, chaos occurs. 
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Fig. 12. Two orbits of q 2 l with initial values for v = 1.22. 

Notes: The blue curve represents a group of initial values ( q 10 , q 2 h 0 , q 2 l 0 ) = (1.1, 0.6, 1.6). The red curve represents a group of initial values ( q 10 , q 2 h 0 , 

q 2 l 0 ) = (1.1, 0.6, 1.601). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Bifurcation diagram with respect to control factor k. 

 

 

Fig. 9 shows strange attractors for a bigger v . It implies the system experiences chaos when v = 1.22. 

We also need to discuss the sensitivity on initial values. From Figs. 10–12 , v = 1.22 is fixed. 

As t increases, a tiny change �= 0.001 of q 1 , q 2 h , q 2 l could cause a dramatic fluctuation when the system is in chaos

( v = 1.22) from Figs. 10–12 . 

Fig. 13 shows the map of bifurcation with respect to control factor k . Feedback control method is used to delay and elim-

inate chaos. The outputs of manufactures finally stabilize at the equilibrium levels q ∗ = 1.0 6 67, q ∗ = 0.46 67, q ∗ = 1.46 67. 
1 2 h 2 l 
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Fig. 14. Lyapunov exponent diagram with respect to k. 

Fig. 15. Effects of control factor k on q 1 , q 2 h , q 2 l. 
Notes: The red curve in three subgraphs represents the chaotic status of q 1 , q 2 h , q 2 l respectively. The blue curve in three subgraphs represents the Bayesian 

Nash equilibrium output of q 1 , q 2 h , q 2 l respectively with a control factor k ( k = 0.7). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

The largest Lyapunov exponent with respect to k is drawn in Fig. 14 . The first, second and third bifurcation point in

Fig. 13 corresponds to G (0.5690, −0.0202), H (0.1270, −0.0109) and I (0.0810, −0.0117) in Fig. 14 , respectively. When the

largest Lyapunov exponent is smaller than zero, equilibrium occurs. 

Figs. 15 and 16 represent the effects of control factor k on outputs and profits. The outputs and profits experience

chaos and bifurcation, maintain equilibrium finally ( q ∗
1 

= 1 . 0 6 67 , q ∗
2 h 

= 0 . 46 67 , q ∗
2 l 

= 1 . 46 67 ; π ∗
1 

= 1 . 7778 , π ∗
2 h 

= 0 . 2178 ,

π ∗
2 l 

= 2 . 1511 ). 
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Fig. 16. Effects of control factor k on π1 , π2 h , π2 l. 

Notes: The red curve in three subgraphs represents the chaotic status of π 1 , π2 h , π2 l respectively. The blue curve in three subgraphs represents the 

Bayesian Nash equilibrium profit of q 1 , q 2 h , q 2 l respectively with a control factor k ( k = 0.7). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 . Conclusion 

In similar research articles, although considering bounded rationality and asymmetric information, whether Bayesian

Nash equilibrium could be achieved by dynamic system is not demonstrated. There are few literatures analyzing complex

dynamics behavior of game of incomplete information. 

In this paper, we construct a dynamic Cournot duopoly model with asymmetric information. Specially, we have two as-

sumptions. Firstly, firm 2 has a marginal cost which is his private information. Secondly, firm 1’s marginal cost is a common

knowledge. We use the above assumptions to introduce asymmetry information of firms and describe actual economic prob-

lems. In our models, based on adaptive expectation and bounded rationality, the probability distribution parameter θ (firm

2’s probability of high cost) plays an important role in chaos occurrence. 

In theoretical analysis of Sections 4 and 5 , we give two behavioral rules: adaptive expectation and an adjustment rule

based on marginal profit. Globally and locally asymptotically stability of Bayesian Nash equilibrium is proved in Propositions

3 and 5 respectively. They illustrate that different expectations have effect on stability of Bayesian Nash equilibrium. 

In numerical simulation section, we observed abundant and complex phenomena which verify the theoretical results.

No matter how expectation parameters α1 or α2 changes, equilibrium would remain. But with parameter θ or v (firm 1’s

adjustment speed of output) increasing, bifurcation or even chaos, is presented in simulation. The influence of parameters

on the stability of system is further analyzed. The above results imply that once a firm chooses a production form (high

cost or low cost), the effect of an adjustment rule based on marginal profit on market stability is greater than expectation

adjustment behavior. On the contrary, if expectation and adjustment speed of output parameters are determined, a high-cost

firm is more likely to cause chaos in duopoly market. In addition, a three-dimensional strange attractor region is presented.

Sensitivity on initial values is demonstrated. Chaos is controlled by delay feedback control method. 
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